Spaces:
Running
Running
File size: 5,291 Bytes
8cb8054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import os
import math
import gradio as gr
def make_chatbots(output_label0, output_label0_model2, **kwargs):
visible_models = kwargs['visible_models']
all_models = kwargs['all_models']
text_outputs = []
chat_kwargs = []
for model_state_locki, model_state_lock in enumerate(kwargs['model_states']):
if os.environ.get('DEBUG_MODEL_LOCK'):
model_name = model_state_lock["base_model"] + " : " + model_state_lock["inference_server"]
else:
model_name = model_state_lock["base_model"]
output_label = f'h2oGPT [{model_name}]'
min_width = 250 if kwargs['gradio_size'] in ['small', 'large', 'medium'] else 160
chat_kwargs.append(dict(label=output_label, elem_classes='chatsmall',
height=kwargs['height'] or 400, min_width=min_width,
show_copy_button=kwargs['show_copy_button'],
visible=kwargs['model_lock'] and (visible_models is None or
model_state_locki in visible_models or
all_models[model_state_locki] in visible_models
)))
# base view on initial visible choice
if visible_models:
len_visible = len(visible_models)
else:
len_visible = len(kwargs['model_states'])
if kwargs['model_lock_columns'] == -1:
kwargs['model_lock_columns'] = len_visible
if kwargs['model_lock_columns'] is None:
kwargs['model_lock_columns'] = 3
ncols = kwargs['model_lock_columns']
if kwargs['model_states'] == 0:
nrows = 0
else:
nrows = math.ceil(len_visible / kwargs['model_lock_columns'])
if kwargs['model_lock_columns'] == 0:
# not using model_lock
pass
elif nrows <= 1:
with gr.Row():
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']):
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows == kwargs['model_states']:
with gr.Row():
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']):
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows == 2:
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii >= len_visible / 2:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < len_visible / 2:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows == 3:
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii >= 1 * len_visible / 3:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < 1 * len_visible / 3 or mii >= 2 * len_visible / 3:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < 2 * len_visible / 3:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows >= 4:
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii >= 1 * len_visible / 4:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < 1 * len_visible / 4 or mii >= 2 * len_visible / 4:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < 2 * len_visible / 4 or mii >= 3 * len_visible / 4:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < 3 * len_visible / 4:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
with gr.Row():
text_output = gr.Chatbot(label=output_label0, visible=not kwargs['model_lock'], height=kwargs['height'] or 400)
text_output2 = gr.Chatbot(label=output_label0_model2,
visible=False and not kwargs['model_lock'], height=kwargs['height'] or 400)
return text_output, text_output2, text_outputs
|