Spaces:
Running
Running
File size: 51,015 Bytes
32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b 1265a5f 32c203b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
import functools
import inspect
import os
import sys
from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js
from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print
from finetune import prompt_type_to_model_name, prompt_types_strings, generate_prompt, inv_prompt_type_to_model_lower
from generate import get_model, languages_covered, evaluate, eval_func_param_names, score_qa
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
def go_gradio(**kwargs):
allow_api = kwargs['allow_api']
is_public = kwargs['is_public']
is_hf = kwargs['is_hf']
is_low_mem = kwargs['is_low_mem']
n_gpus = kwargs['n_gpus']
admin_pass = kwargs['admin_pass']
model_state0 = kwargs['model_state0']
score_model_state0 = kwargs['score_model_state0']
queue = True
# easy update of kwargs needed for evaluate() etc.
kwargs.update(locals())
if 'mbart-' in kwargs['model_lower']:
instruction_label_nochat = "Text to translate"
else:
instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \
" use Enter for multiple input lines)"
if kwargs['input_lines'] > 1:
instruction_label = "You (Shift-Enter or push Submit to send message, use Enter for multiple input lines)"
else:
instruction_label = "You (Enter or push Submit to send message, shift-enter for more lines)"
title = 'h2oGPT'
if 'h2ogpt-research' in kwargs['base_model']:
title += " [Research demonstration]"
if kwargs['verbose']:
description = f"""Model {kwargs['base_model']} Instruct dataset.
For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
Command: {str(' '.join(sys.argv))}
Hash: {get_githash()}
"""
else:
description = "For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).<br>"
if is_public:
description += "If this host is busy, try [gpt.h2o.ai 20B](https://gpt.h2o.ai) and [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) and [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)<br>"
description += """<p><b> DISCLAIMERS: </b><ul><i><li>The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.</i></li>"""
if kwargs['load_8bit']:
description += """<i><li> Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.</i></li>"""
description += """<i><li>Conversations may be used to improve h2oGPT. Do not share sensitive information.</i></li>"""
if 'h2ogpt-research' in kwargs['base_model']:
description += """<i><li>Research demonstration only, not used for commercial purposes.</i></li>"""
description += """<i><li>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).</i></li></ul></p>"""
if kwargs['verbose']:
task_info_md = f"""
### Task: {kwargs['task_info']}"""
else:
task_info_md = ''
if kwargs['h2ocolors']:
css_code = """footer {visibility: hidden;}
body{background:linear-gradient(#f5f5f5,#e5e5e5);}
body.dark{background:linear-gradient(#000000,#0d0d0d);}
"""
else:
css_code = """footer {visibility: hidden}"""
if kwargs['gradio_avoid_processing_markdown']:
from gradio_client import utils as client_utils
from gradio.components import Chatbot
# gradio has issue with taking too long to process input/output for markdown etc.
# Avoid for now, allow raw html to render, good enough for chatbot.
def _postprocess_chat_messages(self, chat_message: str):
if chat_message is None:
return None
elif isinstance(chat_message, (tuple, list)):
filepath = chat_message[0]
mime_type = client_utils.get_mimetype(filepath)
filepath = self.make_temp_copy_if_needed(filepath)
return {
"name": filepath,
"mime_type": mime_type,
"alt_text": chat_message[1] if len(chat_message) > 1 else None,
"data": None, # These last two fields are filled in by the frontend
"is_file": True,
}
elif isinstance(chat_message, str):
return chat_message
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
Chatbot._postprocess_chat_messages = _postprocess_chat_messages
theme = H2oTheme() if kwargs['h2ocolors'] else SoftTheme()
demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False)
callback = gr.CSVLogger()
model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
if kwargs['base_model'].strip() not in model_options:
lora_options = [kwargs['base_model'].strip()] + model_options
lora_options = kwargs['extra_lora_options']
if kwargs['lora_weights'].strip() not in lora_options:
lora_options = [kwargs['lora_weights'].strip()] + lora_options
# always add in no lora case
# add fake space so doesn't go away in gradio dropdown
no_lora_str = no_model_str = '[None/Remove]'
lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double?
# always add in no model case so can free memory
# add fake space so doesn't go away in gradio dropdown
model_options = [no_model_str] + model_options
# transcribe, will be detranscribed before use by evaluate()
if not kwargs['lora_weights'].strip():
kwargs['lora_weights'] = no_lora_str
if not kwargs['base_model'].strip():
kwargs['base_model'] = no_model_str
# transcribe for gradio
kwargs['gpu_id'] = str(kwargs['gpu_id'])
no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]'
output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
'base_model') else no_model_msg
output_label0_model2 = no_model_msg
with demo:
# avoid actual model/tokenizer here or anything that would be bad to deepcopy
# https://github.com/gradio-app/gradio/issues/3558
model_state = gr.State(['model', 'tokenizer', kwargs['device'], kwargs['base_model']])
model_state2 = gr.State([None, None, None, None])
model_options_state = gr.State([model_options])
lora_options_state = gr.State([lora_options])
gr.Markdown(f"""
{get_h2o_title(title) if kwargs['h2ocolors'] else get_simple_title(title)}
{description}
{task_info_md}
""")
if is_hf:
gr.HTML(
'''<center><a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate this Space to skip the queue and run in a private space</center>''')
# go button visible if
base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")
normal_block = gr.Row(visible=not base_wanted)
with normal_block:
with gr.Tabs():
with gr.Row():
col_nochat = gr.Column(visible=not kwargs['chat'])
with col_nochat: # FIXME: for model comparison, and check rest
text_output_nochat = gr.Textbox(lines=5, label=output_label0)
instruction_nochat = gr.Textbox(
lines=kwargs['input_lines'],
label=instruction_label_nochat,
placeholder=kwargs['placeholder_instruction'],
)
iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
placeholder=kwargs['placeholder_input'])
submit_nochat = gr.Button("Submit")
flag_btn_nochat = gr.Button("Flag")
if not kwargs['auto_score']:
with gr.Column(visible=kwargs['score_model']):
score_btn_nochat = gr.Button("Score last prompt & response")
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
else:
with gr.Column(visible=kwargs['score_model']):
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
col_chat = gr.Column(visible=kwargs['chat'])
with col_chat:
with gr.Row():
text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400)
text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style(
height=kwargs['height'] or 400)
with gr.Row():
with gr.Column(scale=50):
instruction = gr.Textbox(
lines=kwargs['input_lines'],
label=instruction_label,
placeholder=kwargs['placeholder_instruction'],
)
with gr.Row():
submit = gr.Button(value='Submit').style(full_width=False, size='sm')
stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm')
with gr.Row():
clear = gr.Button("New Conversation")
flag_btn = gr.Button("Flag")
if not kwargs['auto_score']: # FIXME: For checkbox model2
with gr.Column(visible=kwargs['score_model']):
with gr.Row():
score_btn = gr.Button("Score last prompt & response").style(
full_width=False, size='sm')
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_res2 = gr.Row(visible=False)
with score_res2:
score_btn2 = gr.Button("Score last prompt & response 2").style(
full_width=False, size='sm')
score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
else:
with gr.Column(visible=kwargs['score_model']):
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
retry = gr.Button("Regenerate")
undo = gr.Button("Undo")
with gr.TabItem("Input/Output"):
with gr.Row():
if 'mbart-' in kwargs['model_lower']:
src_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['src_lang'],
label="Input Language")
tgt_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['tgt_lang'],
label="Output Language")
with gr.TabItem("Expert"):
with gr.Row():
with gr.Column():
stream_output = gr.components.Checkbox(label="Stream output",
value=kwargs['stream_output'])
prompt_type = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type",
visible=not is_public)
prompt_type2 = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type Model 2",
visible=not is_public and False)
do_sample = gr.Checkbox(label="Sample",
info="Enable sampler, required for use of temperature, top_p, top_k",
value=kwargs['do_sample'])
temperature = gr.Slider(minimum=0.01, maximum=3,
value=kwargs['temperature'],
label="Temperature",
info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
top_p = gr.Slider(minimum=0, maximum=1,
value=kwargs['top_p'], label="Top p",
info="Cumulative probability of tokens to sample from")
top_k = gr.Slider(
minimum=0, maximum=100, step=1,
value=kwargs['top_k'], label="Top k",
info='Num. tokens to sample from'
)
max_beams = 8 if not is_low_mem else 2
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
value=min(max_beams, kwargs['num_beams']), label="Beams",
info="Number of searches for optimal overall probability. "
"Uses more GPU memory/compute")
max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens']
max_new_tokens = gr.Slider(
minimum=1, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
)
min_new_tokens = gr.Slider(
minimum=0, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
)
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
value=kwargs['early_stopping'])
max_max_time = 60 * 5 if not is_low_mem else 60
max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
value=min(max_max_time, kwargs['max_time']), label="Max. time",
info="Max. time to search optimal output.")
repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
value=kwargs['repetition_penalty'],
label="Repetition Penalty")
num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
value=kwargs['num_return_sequences'],
label="Number Returns", info="Must be <= num_beams",
visible=not is_public)
iinput = gr.Textbox(lines=4, label="Input",
placeholder=kwargs['placeholder_input'],
visible=not is_public)
context = gr.Textbox(lines=3, label="System Pre-Context",
info="Directly pre-appended without prompt processing",
visible=not is_public)
chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
visible=not is_public)
with gr.TabItem("Models"):
load_msg = "Load-Unload Model/LORA" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
load_msg2 = "Load-Unload Model/LORA 2" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
compare_checkbox = gr.components.Checkbox(label="Compare Mode",
value=False, visible=not is_public)
with gr.Row():
n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
with gr.Column():
with gr.Row():
with gr.Column(scale=50):
model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
value=kwargs['base_model'])
lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
value=kwargs['lora_weights'], visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button = gr.Button(load_msg)
model_load8bit_checkbox = gr.components.Checkbox(
label="Load 8-bit [requires support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox = gr.components.Checkbox(
label="Choose Devices [If not Checked, use all GPUs]",
value=kwargs['infer_devices'])
model_gpu = gr.Dropdown(n_gpus_list,
label="GPU ID 2 [-1 = all GPUs, if Choose is enabled]",
value=kwargs['gpu_id'])
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'])
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
visible=kwargs['show_lora'])
with gr.Row():
with gr.Column(scale=50):
new_model = gr.Textbox(label="New Model HF name/path")
new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora'])
with gr.Column(scale=1):
add_model_button = gr.Button("Add new model name")
add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora'])
col_model2 = gr.Column(visible=False)
with col_model2:
with gr.Row():
with gr.Column(scale=50):
model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
value=no_model_str)
lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
value=no_lora_str,
visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button2 = gr.Button(load_msg2)
model_load8bit_checkbox2 = gr.components.Checkbox(
label="Load 8-bit 2 [requires support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox2 = gr.components.Checkbox(
label="Choose Devices 2 [If not Checked, use all GPUs]",
value=kwargs[
'infer_devices'])
model_gpu2 = gr.Dropdown(n_gpus_list,
label="GPU ID [-1 = all GPUs, if choose is enabled]",
value=kwargs['gpu_id'])
# no model/lora loaded ever in model2 by default
model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str)
lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
visible=kwargs['show_lora'])
with gr.TabItem("System"):
admin_row = gr.Row()
with admin_row:
admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public)
admin_btn = gr.Button(value="Admin Access", visible=is_public)
system_row = gr.Row(visible=not is_public)
with system_row:
with gr.Column():
with gr.Row():
system_btn = gr.Button(value='Get System Info')
system_text = gr.Textbox(label='System Info')
with gr.Row():
zip_btn = gr.Button("Zip")
zip_text = gr.Textbox(label="Zip file name")
file_output = gr.File()
with gr.Row():
s3up_btn = gr.Button("S3UP")
s3up_text = gr.Textbox(label='S3UP result')
# Get flagged data
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text])
s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text)
def check_admin_pass(x):
return gr.update(visible=x == admin_pass)
def close_admin(x):
return gr.update(visible=not (x == admin_pass))
admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) \
.then(close_admin, inputs=admin_pass_textbox, outputs=admin_row)
# Get inputs to evaluate()
all_kwargs = kwargs.copy()
all_kwargs.update(locals())
inputs_list = get_inputs_list(all_kwargs, kwargs['model_lower'])
from functools import partial
kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list}
# ensure present
for k in inputs_kwargs_list:
assert k in kwargs_evaluate, "Missing %s" % k
fun = partial(evaluate,
**kwargs_evaluate)
fun2 = partial(evaluate,
**kwargs_evaluate)
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
size="sm",
)
dark_mode_btn.click(
None,
None,
None,
_js=get_dark_js(),
api_name="dark" if allow_api else None,
)
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
def col_nochat_fun(x):
return gr.Column.update(visible=not x)
def col_chat_fun(x):
return gr.Column.update(visible=x)
def context_fun(x):
return gr.Textbox.update(visible=not x)
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \
.then(col_chat_fun, chat, col_chat) \
.then(context_fun, chat, context)
# examples after submit or any other buttons for chat or no chat
if kwargs['examples'] is not None and kwargs['show_examples']:
gr.Examples(examples=kwargs['examples'], inputs=inputs_list)
# Score
def score_last_response(*args, nochat=False, model2=False):
""" Similar to user() """
args_list = list(args)
max_length_tokenize = 512 if is_low_mem else 2048
cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM
smodel = score_model_state0[0]
stokenizer = score_model_state0[1]
sdevice = score_model_state0[2]
if not nochat:
history = args_list[-1]
if history is None:
if not model2:
# maybe only doing first model, no need to complain
print("Bad history in scoring last response, fix for now", flush=True)
history = []
if smodel is not None and \
stokenizer is not None and \
sdevice is not None and \
history is not None and len(history) > 0 and \
history[-1] is not None and \
len(history[-1]) >= 2:
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
question = history[-1][0]
answer = history[-1][1]
else:
return 'Response Score: NA'
else:
answer = args_list[-1]
instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat')
question = args_list[instruction_nochat_arg_id]
if question is None:
return 'Response Score: Bad Question'
if answer is None:
return 'Response Score: Bad Answer'
score = score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len)
if isinstance(score, str):
return 'Response Score: NA'
return 'Response Score: {:.1%}'.format(score)
def noop_score_last_response(*args, **kwargs):
return "Response Score: Disabled"
if kwargs['score_model']:
score_fun = score_last_response
else:
score_fun = noop_score_last_response
score_args = dict(fn=score_fun,
inputs=inputs_list + [text_output],
outputs=[score_text],
)
score_args2 = dict(fn=partial(score_fun, model2=True),
inputs=inputs_list + [text_output2],
outputs=[score_text2],
)
score_args_nochat = dict(fn=partial(score_fun, nochat=True),
inputs=inputs_list + [text_output_nochat],
outputs=[score_text_nochat],
)
if not kwargs['auto_score']:
score_event = score_btn.click(**score_args, queue=queue, api_name='score' if allow_api else None) \
.then(**score_args2, queue=queue, api_name='score2' if allow_api else None)
score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=queue,
api_name='score_nochat' if allow_api else None)
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
"""
User that fills history for bot
:param args:
:param undo:
:param sanitize_user_prompt:
:param model2:
:return:
"""
args_list = list(args)
user_message = args_list[0]
input1 = args_list[1]
context1 = args_list[2]
if input1 and not user_message.endswith(':'):
user_message1 = user_message + ":" + input1
elif input1:
user_message1 = user_message + input1
else:
user_message1 = user_message
if sanitize_user_prompt:
from better_profanity import profanity
user_message1 = profanity.censor(user_message1)
history = args_list[-1]
if undo and history:
history.pop()
args_list = args_list[:-1] # FYI, even if unused currently
if history is None:
if not model2:
# no need to complain so often unless model1
print("Bad history, fix for now", flush=True)
history = []
# ensure elements not mixed across models as output,
# even if input is currently same source
history = history.copy()
if undo:
return history
else:
# FIXME: compare, same history for now
return history + [[user_message1, None]]
def bot(*args, retry=False):
"""
bot that consumes history for user input
instruction (from input_list) itself is not consumed by bot
:param args:
:param retry:
:return:
"""
args_list = list(args).copy()
history = args_list[-1] # model_state is -2
if retry and history:
history.pop()
if not history:
print("No history", flush=True)
return
# ensure output will be unique to models
history = history.copy()
instruction1 = history[-1][0]
context1 = ''
if kwargs['chat_history'] > 0:
prompt_type_arg_id = eval_func_param_names.index('prompt_type')
prompt_type1 = args_list[prompt_type_arg_id]
chat_arg_id = eval_func_param_names.index('chat')
chat1 = args_list[chat_arg_id]
context1 = ''
for histi in range(len(history) - 1):
data_point = dict(instruction=history[histi][0], input='', output=history[histi][1])
context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace(
'<br>', '\n')
if not context1.endswith('\n'):
context1 += '\n'
if context1 and not context1.endswith('\n'):
context1 += '\n' # ensure if terminates abruptly, then human continues on next line
args_list[0] = instruction1 # override original instruction with history from user
# only include desired chat history
args_list[2] = context1[-kwargs['chat_history']:]
model_state1 = args_list[-2]
if model_state1[0] is None or model_state1[0] == no_model_str:
return
args_list = args_list[:-2]
fun1 = partial(evaluate,
model_state1,
**kwargs_evaluate)
try:
for output in fun1(*tuple(args_list)):
bot_message = output
history[-1][1] = bot_message
yield history
except StopIteration:
yield history
except RuntimeError as e:
if "generator raised StopIteration" in str(e):
# assume last entry was bad, undo
history.pop()
yield history
raise
except Exception as e:
# put error into user input
history[-1][0] = "Exception: %s" % str(e)
yield history
raise
return
# NORMAL MODEL
user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
inputs=inputs_list + [text_output],
outputs=text_output,
)
bot_args = dict(fn=bot,
inputs=inputs_list + [model_state] + [text_output],
outputs=text_output,
)
retry_bot_args = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list + [model_state] + [text_output],
outputs=text_output,
)
undo_user_args = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output],
outputs=text_output,
)
# MODEL2
user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
inputs=inputs_list + [text_output2],
outputs=text_output2,
)
bot_args2 = dict(fn=bot,
inputs=inputs_list + [model_state2] + [text_output2],
outputs=text_output2,
)
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list + [model_state2] + [text_output2],
outputs=text_output2,
)
undo_user_args2 = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output2],
outputs=text_output2,
)
def clear_instruct():
return gr.Textbox.update(value='')
if kwargs['auto_score']:
# in case 2nd model, consume instruction first, so can clear quickly
# bot doesn't consume instruction itself, just history from user, so why works
submit_event = instruction.submit(**user_args, queue=queue,
api_name='instruction' if allow_api else None) \
.then(**user_args2, api_name='instruction2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**bot_args, api_name='instruction_bot' if allow_api else None, queue=queue) \
.then(**score_args, api_name='instruction_bot_score' if allow_api else None, queue=queue) \
.then(**bot_args2, api_name='instruction_bot2' if allow_api else None, queue=queue) \
.then(**score_args2, api_name='instruction_bot_score2' if allow_api else None, queue=queue) \
.then(clear_torch_cache)
submit_event2 = submit.click(**user_args, api_name='submit' if allow_api else None) \
.then(**user_args2, api_name='submit2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue) \
.then(**score_args, api_name='submit_bot_score' if allow_api else None, queue=queue) \
.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue) \
.then(**score_args2, api_name='submit_bot_score2' if allow_api else None, queue=queue) \
.then(clear_torch_cache)
submit_event3 = retry.click(**user_args, api_name='retry' if allow_api else None) \
.then(**user_args2, api_name='retry2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**retry_bot_args, api_name='retry_bot' if allow_api else None, queue=queue) \
.then(**score_args, api_name='retry_bot_score' if allow_api else None, queue=queue) \
.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None, queue=queue) \
.then(**score_args2, api_name='retry_bot_score2' if allow_api else None, queue=queue) \
.then(clear_torch_cache)
submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \
.then(**undo_user_args2, api_name='undo2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**score_args, api_name='undo_score' if allow_api else None) \
.then(**score_args2, api_name='undo_score2' if allow_api else None)
else:
submit_event = instruction.submit(**user_args,
api_name='instruction' if allow_api else None) \
.then(**user_args2, api_name='instruction2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**bot_args, api_name='instruction_bot' if allow_api else None, queue=queue) \
.then(**bot_args2, api_name='instruction_bot2' if allow_api else None, queue=queue) \
.then(clear_torch_cache)
submit_event2 = submit.click(**user_args, api_name='submit' if allow_api else None) \
.then(**user_args2, api_name='submit2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue) \
.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue) \
.then(clear_torch_cache)
submit_event3 = retry.click(**user_args, api_name='retry' if allow_api else None) \
.then(**user_args2, api_name='retry2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**retry_bot_args, api_name='retry_bot' if allow_api else None, queue=queue) \
.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None, queue=queue) \
.then(clear_torch_cache)
submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \
.then(**undo_user_args2, api_name='undo2' if allow_api else None)
# does both models
clear.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \
.then(lambda: None, None, text_output2, queue=False, api_name='clear2' if allow_api else None)
# NOTE: clear of instruction/iinput for nochat has to come after score,
# because score for nochat consumes actual textbox, while chat consumes chat history filled by user()
submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list,
outputs=text_output_nochat,
queue=queue,
api_name='submit_nochat' if allow_api else None) \
.then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \
.then(clear_instruct, None, instruction_nochat) \
.then(clear_instruct, None, iinput_nochat) \
.then(clear_torch_cache)
def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
# ensure old model removed from GPU memory
if kwargs['debug']:
print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True)
model0 = model_state0[0]
if isinstance(model_state_old[0], str) and model0 is not None:
# best can do, move model loaded at first to CPU
model0.cpu()
if model_state_old[0] is not None and not isinstance(model_state_old[0], str):
try:
model_state_old[0].cpu()
except Exception as e:
# sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data!
print("Unable to put model on CPU: %s" % str(e), flush=True)
del model_state_old[0]
model_state_old[0] = None
if model_state_old[1] is not None and not isinstance(model_state_old[1], str):
del model_state_old[1]
model_state_old[1] = None
clear_torch_cache()
if kwargs['debug']:
print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True)
if model_name is None or model_name == no_model_str:
# no-op if no model, just free memory
# no detranscribe needed for model, never go into evaluate
lora_weights = no_lora_str
return [None, None, None, model_name], model_name, lora_weights, prompt_type_old
all_kwargs1 = all_kwargs.copy()
all_kwargs1['base_model'] = model_name.strip()
all_kwargs1['load_8bit'] = load_8bit
all_kwargs1['infer_devices'] = infer_devices
all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe
model_lower = model_name.strip().lower()
if model_lower in inv_prompt_type_to_model_lower:
prompt_type1 = inv_prompt_type_to_model_lower[model_lower]
else:
prompt_type1 = prompt_type_old
# detranscribe
if lora_weights == no_lora_str:
lora_weights = ''
all_kwargs1['lora_weights'] = lora_weights.strip()
model1, tokenizer1, device1 = get_model(**all_kwargs1)
clear_torch_cache()
if kwargs['debug']:
print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True)
return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1
def dropdown_prompt_type_list(x):
return gr.Dropdown.update(value=x)
def chatbot_list(x, model_used_in):
return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]')
load_model_args = dict(fn=load_model,
inputs=[model_choice, lora_choice, model_state, prompt_type,
model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu],
outputs=[model_state, model_used, lora_used, prompt_type])
prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type)
chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output)
nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat)
if not is_public:
load_model_event = load_model_button.click(**load_model_args) \
.then(**prompt_update_args) \
.then(**chatbot_update_args) \
.then(**nochat_update_args) \
.then(clear_torch_cache)
load_model_args2 = dict(fn=load_model,
inputs=[model_choice2, lora_choice2, model_state2, prompt_type2,
model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2],
outputs=[model_state2, model_used2, lora_used2, prompt_type2])
prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2)
chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2)
if not is_public:
load_model_event2 = load_model_button2.click(**load_model_args2) \
.then(**prompt_update_args2) \
.then(**chatbot_update_args2) \
.then(clear_torch_cache)
def dropdown_model_list(list0, x):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
return gr.Dropdown.update(value=x, choices=new_options), \
gr.Dropdown.update(value=x, choices=new_options), \
'', new_state
add_model_event = add_model_button.click(fn=dropdown_model_list,
inputs=[model_options_state, new_model],
outputs=[model_choice, model_choice2, new_model, model_options_state])
def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
# don't switch drop-down to added lora if already have model loaded
x1 = x if model_used1 == no_model_str else lora_used1
x2 = x if model_used2 == no_model_str else lora_used2
return gr.Dropdown.update(value=x1, choices=new_options), \
gr.Dropdown.update(value=x2, choices=new_options), \
'', new_state
add_lora_event = add_lora_button.click(fn=dropdown_lora_list,
inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2,
lora_used2],
outputs=[lora_choice, lora_choice2, new_lora, lora_options_state])
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None) \
.then(lambda: gr.update(visible=True), None, normal_block) \
.then(**load_model_args).then(**prompt_update_args)
def compare_textbox_fun(x):
return gr.Textbox.update(visible=x)
def compare_column_fun(x):
return gr.Column.update(visible=x)
def compare_prompt_fun(x):
return gr.Dropdown.update(visible=x)
compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2,
api_name="compare_checkbox" if allow_api else None) \
.then(compare_column_fun, compare_checkbox, col_model2) \
.then(compare_prompt_fun, compare_checkbox, prompt_type2) \
.then(compare_textbox_fun, compare_checkbox, score_text2)
# FIXME: add score_res2 in condition, but do better
# callback for logging flagged input/output
callback.setup(inputs_list + [text_output, text_output2], "flagged_data_points")
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2], None,
preprocess=False,
api_name='flag' if allow_api else None)
flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None,
preprocess=False,
api_name='flag_nochat' if allow_api else None)
def get_system_info():
return gr.Textbox.update(value=system_info_print())
system_event = system_btn.click(get_system_info, outputs=system_text,
api_name='system_info' if allow_api else None)
# don't pass text_output, don't want to clear output, just stop it
# FIXME: have to click once to stop output and second time to stop GPUs going
stop_btn.click(lambda: None, None, None,
cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache)
demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] else None)
demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open'])
favicon_path = "h2o-logo.svg"
scheduler = BackgroundScheduler()
scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20)
scheduler.start()
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
print("Started GUI", flush=True)
if kwargs['block_gradio_exit']:
demo.block_thread()
input_args_list = ['model_state']
inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0', 'is_low_mem',
'raise_generate_gpu_exceptions', 'chat_context', 'concurrency_count']
def get_inputs_list(inputs_dict, model_lower):
"""
map gradio objects in locals() to inputs for evaluate().
:param inputs_dict:
:param model_lower:
:return:
"""
inputs_list_names = list(inspect.signature(evaluate).parameters)
inputs_list = []
for k in inputs_list_names:
if k == 'kwargs':
continue
if k in input_args_list + inputs_kwargs_list:
# these are added via partial, not taken as input
continue
if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']:
continue
inputs_list.append(inputs_dict[k])
return inputs_list
|