Spaces:
Running
Running
File size: 8,433 Bytes
935bf6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import functools
import typing
import aiohttp
from langchain.docstore.document import Document
from langchain import SerpAPIWrapper
from src.utils_langchain import _chunk_sources, add_parser, _add_meta
from urllib.parse import urlparse
class H2OSerpAPIWrapper(SerpAPIWrapper):
def get_search_documents(self, query,
query_action=True,
chunk=True, chunk_size=512,
db_type='chroma',
headsize=50,
top_k_docs=-1):
docs = self.run(query, headsize)
chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
docs = chunk_sources(docs)
# choose chunk type
if query_action:
docs = [x for x in docs if x.metadata['chunk_id'] >= 0]
else:
docs = [x for x in docs if x.metadata['chunk_id'] == -1]
# get score assuming search results scale with ranking
delta = 0.05
[x.metadata.update(score=0.1 + delta * x.metadata['chunk_id'] if x.metadata['chunk_id'] >= 0 else -1) for x in
docs]
# ensure see all results up to cutoff or mixing with non-web docs
if top_k_docs >= 1:
top_k_docs = max(top_k_docs, len(docs))
return docs, top_k_docs
async def arun(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
"""Run query through SerpAPI and parse result async."""
return self._process_response(await self.aresults(query), query, headsize)
def run(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
"""Run query through SerpAPI and parse result."""
return self._process_response(self.results(query), query, headsize)
@staticmethod
def _process_response(res: dict, query: str, headsize: int) -> list:
try:
return H2OSerpAPIWrapper.__process_response(res, query, headsize)
except Exception as e:
print("SERP search failed: %s" % str(e))
return []
@staticmethod
def __process_response(res: dict, query: str, headsize: int) -> list:
docs = []
res1 = SerpAPIWrapper._process_response(res)
if res1:
if isinstance(res1, str) and not res1.startswith('['): # avoid snippets
docs += [Document(page_content='Web search result %s: ' % len(docs) + res1,
metadata=dict(source='Web Search %s for %s' % (len(docs), query), score=0.0))]
elif isinstance(res1, list):
for x in res1:
date = ''
content = ''
if 'source' in x:
source = x['source']
content += '%s says' % source
else:
content = 'Web search result %s: ' % len(docs)
if 'date' in x:
date = x['date']
content += ' %s' % date
if 'title' in x:
content += ': %s' % x['title']
if 'snippet' in x:
content += ': %s' % x['snippet']
if 'link' in x:
link = x['link']
domain = urlparse(link).netloc
font_size = 2
source_name = domain
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % (
font_size, link, source_name)
source = 'Web Search %s' % len(docs) + \
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
if date:
content += ' around %s' % date
content += ' according to %s' % domain
else:
source = 'Web Search %s for %s' % (len(docs), query)
docs += [Document(page_content=content, metadata=dict(source=source, score=0.0))]
if "knowledge_graph" in res.keys():
knowledge_graph = res["knowledge_graph"]
title = knowledge_graph["title"] if "title" in knowledge_graph else ""
if "description" in knowledge_graph.keys():
docs += [Document(page_content='Web search result %s: ' % len(docs) + knowledge_graph["description"],
metadata=dict(source='Web Search %s with knowledge_graph description for %s' % (
len(docs), query), score=0.0))]
for key, value in knowledge_graph.items():
if (
type(key) == str
and type(value) == str
and key not in ["title", "description"]
and not key.endswith("_stick")
and not key.endswith("_link")
and not value.startswith("http")
):
docs += [Document(page_content='Web search result %s: ' % len(docs) + f"{title} {key}: {value}.",
metadata=dict(
source='Web Search %s with knowledge_graph for %s' % (len(docs), query),
score=0.0))]
if "organic_results" in res.keys():
for org_res in res["organic_results"]:
keys_to_try = ['snippet', 'snippet_highlighted_words', 'rich_snippet', 'rich_snippet_table', 'link']
for key in keys_to_try:
if key in org_res.keys():
date = ''
domain = ''
link = ''
snippet1 = ''
if key != 'link':
snippet1 = org_res[key]
if 'date' in org_res.keys():
date = org_res['date']
snippet1 += ' on %s' % date
else:
date = 'unknown date'
if 'link' in org_res.keys():
link = org_res['link']
domain = urlparse(link).netloc
if key == 'link':
# worst case, only url might have REST info
snippet1 += ' Link at %s: <a href="%s">%s</a>' % (domain, link, domain)
else:
snippet1 += ' according to %s' % domain
if snippet1:
font_size = 2
source_name = domain
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % (
font_size, link, source_name)
source = 'Web Search %s' % len(docs) + \
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
domain_simple = domain.replace('www.', '').replace('.com', '')
snippet1 = '%s says on %s: %s' % (domain_simple, date, snippet1)
docs += [Document(page_content=snippet1, metadata=dict(source=source), score=0.0)]
break
if "buying_guide" in res.keys():
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["buying_guide"],
metadata=dict(source='Web Search %s with buying_guide for %s' % (len(docs), query)),
score=0.0)]
if "local_results" in res.keys() and "places" in res["local_results"].keys():
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["local_results"]["places"],
metadata=dict(
source='Web Search %s with local_results_places for %s' % (len(docs), query)),
score=0.0)]
# add meta
add_meta = functools.partial(_add_meta, headsize=headsize, parser='SERPAPI')
add_meta(docs, query)
return docs
|