File size: 8,433 Bytes
935bf6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import functools
import typing

import aiohttp
from langchain.docstore.document import Document
from langchain import SerpAPIWrapper

from src.utils_langchain import _chunk_sources, add_parser, _add_meta
from urllib.parse import urlparse


class H2OSerpAPIWrapper(SerpAPIWrapper):
    def get_search_documents(self, query,
                             query_action=True,
                             chunk=True, chunk_size=512,
                             db_type='chroma',
                             headsize=50,
                             top_k_docs=-1):
        docs = self.run(query, headsize)

        chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
        docs = chunk_sources(docs)

        # choose chunk type
        if query_action:
            docs = [x for x in docs if x.metadata['chunk_id'] >= 0]
        else:
            docs = [x for x in docs if x.metadata['chunk_id'] == -1]

        # get score assuming search results scale with ranking
        delta = 0.05
        [x.metadata.update(score=0.1 + delta * x.metadata['chunk_id'] if x.metadata['chunk_id'] >= 0 else -1) for x in
         docs]

        # ensure see all results up to cutoff or mixing with non-web docs
        if top_k_docs >= 1:
            top_k_docs = max(top_k_docs, len(docs))

        return docs, top_k_docs

    async def arun(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
        """Run query through SerpAPI and parse result async."""
        return self._process_response(await self.aresults(query), query, headsize)

    def run(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
        """Run query through SerpAPI and parse result."""
        return self._process_response(self.results(query), query, headsize)

    @staticmethod
    def _process_response(res: dict, query: str, headsize: int) -> list:
        try:
            return H2OSerpAPIWrapper.__process_response(res, query, headsize)
        except Exception as e:
            print("SERP search failed: %s" % str(e))
            return []

    @staticmethod
    def __process_response(res: dict, query: str, headsize: int) -> list:
        docs = []

        res1 = SerpAPIWrapper._process_response(res)
        if res1:
            if isinstance(res1, str) and not res1.startswith('['):  # avoid snippets
                docs += [Document(page_content='Web search result %s: ' % len(docs) + res1,
                                  metadata=dict(source='Web Search %s for %s' % (len(docs), query), score=0.0))]
            elif isinstance(res1, list):
                for x in res1:
                    date = ''
                    content = ''
                    if 'source' in x:
                        source = x['source']
                        content += '%s says' % source
                    else:
                        content = 'Web search result %s: ' % len(docs)
                    if 'date' in x:
                        date = x['date']
                        content += ' %s' % date
                    if 'title' in x:
                        content += ': %s' % x['title']
                    if 'snippet' in x:
                        content += ': %s' % x['snippet']
                    if 'link' in x:
                        link = x['link']
                        domain = urlparse(link).netloc
                        font_size = 2
                        source_name = domain
                        http_content = """<font size="%s"><a href="%s" target="_blank"  rel="noopener noreferrer">%s</a></font>""" % (
                            font_size, link, source_name)
                        source = 'Web Search %s' % len(docs) + \
                                 ' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
                        if date:
                            content += ' around %s' % date
                        content += ' according to %s' % domain
                    else:
                        source = 'Web Search %s for %s' % (len(docs), query)
                    docs += [Document(page_content=content, metadata=dict(source=source, score=0.0))]

        if "knowledge_graph" in res.keys():
            knowledge_graph = res["knowledge_graph"]
            title = knowledge_graph["title"] if "title" in knowledge_graph else ""
            if "description" in knowledge_graph.keys():
                docs += [Document(page_content='Web search result %s: ' % len(docs) + knowledge_graph["description"],
                                  metadata=dict(source='Web Search %s with knowledge_graph description for %s' % (
                                      len(docs), query), score=0.0))]
            for key, value in knowledge_graph.items():
                if (
                        type(key) == str
                        and type(value) == str
                        and key not in ["title", "description"]
                        and not key.endswith("_stick")
                        and not key.endswith("_link")
                        and not value.startswith("http")
                ):
                    docs += [Document(page_content='Web search result %s: ' % len(docs) + f"{title} {key}: {value}.",
                                      metadata=dict(
                                          source='Web Search %s with knowledge_graph for %s' % (len(docs), query),
                                          score=0.0))]
        if "organic_results" in res.keys():
            for org_res in res["organic_results"]:
                keys_to_try = ['snippet', 'snippet_highlighted_words', 'rich_snippet', 'rich_snippet_table', 'link']
                for key in keys_to_try:
                    if key in org_res.keys():
                        date = ''
                        domain = ''
                        link = ''
                        snippet1 = ''
                        if key != 'link':
                            snippet1 = org_res[key]
                        if 'date' in org_res.keys():
                            date = org_res['date']
                            snippet1 += ' on %s' % date
                        else:
                            date = 'unknown date'
                        if 'link' in org_res.keys():
                            link = org_res['link']
                            domain = urlparse(link).netloc
                            if key == 'link':
                                # worst case, only url might have REST info
                                snippet1 += ' Link at %s: <a href="%s">%s</a>' % (domain, link, domain)
                            else:
                                snippet1 += ' according to %s' % domain
                        if snippet1:
                            font_size = 2
                            source_name = domain
                            http_content = """<font size="%s"><a href="%s" target="_blank"  rel="noopener noreferrer">%s</a></font>""" % (
                                font_size, link, source_name)
                            source = 'Web Search %s' % len(docs) + \
                                     ' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
                            domain_simple = domain.replace('www.', '').replace('.com', '')
                            snippet1 = '%s says on %s: %s' % (domain_simple, date, snippet1)
                            docs += [Document(page_content=snippet1, metadata=dict(source=source), score=0.0)]
                            break
        if "buying_guide" in res.keys():
            docs += [Document(page_content='Web search result %s: ' % len(docs) + res["buying_guide"],
                              metadata=dict(source='Web Search %s with buying_guide for %s' % (len(docs), query)),
                              score=0.0)]
        if "local_results" in res.keys() and "places" in res["local_results"].keys():
            docs += [Document(page_content='Web search result %s: ' % len(docs) + res["local_results"]["places"],
                              metadata=dict(
                                  source='Web Search %s with local_results_places for %s' % (len(docs), query)),
                              score=0.0)]

        # add meta
        add_meta = functools.partial(_add_meta, headsize=headsize, parser='SERPAPI')
        add_meta(docs, query)

        return docs