Spaces:
Running
Running
import functools | |
def get_loaders(model_name, reward_type, llama_type=None, load_gptq=''): | |
# NOTE: Some models need specific new prompt_type | |
# E.g. t5_xxl_true_nli_mixture has input format: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".) | |
if load_gptq: | |
from transformers import AutoTokenizer | |
from auto_gptq import AutoGPTQForCausalLM | |
use_triton = False | |
functools.partial(AutoGPTQForCausalLM.from_quantized, quantize_config=None, use_triton=use_triton) | |
return AutoGPTQForCausalLM.from_quantized, AutoTokenizer | |
if llama_type is None: | |
llama_type = "llama" in model_name.lower() | |
if llama_type: | |
from transformers import LlamaForCausalLM, LlamaTokenizer | |
return LlamaForCausalLM.from_pretrained, LlamaTokenizer | |
elif 'distilgpt2' in model_name.lower(): | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
return AutoModelForCausalLM.from_pretrained, AutoTokenizer | |
elif 'gpt2' in model_name.lower(): | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
return GPT2LMHeadModel.from_pretrained, GPT2Tokenizer | |
elif 'mbart-' in model_name.lower(): | |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
return MBartForConditionalGeneration.from_pretrained, MBart50TokenizerFast | |
elif 't5' == model_name.lower() or \ | |
't5-' in model_name.lower() or \ | |
'flan-' in model_name.lower(): | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
return T5ForConditionalGeneration.from_pretrained, AutoTokenizer | |
elif 'bigbird' in model_name: | |
from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer | |
return BigBirdPegasusForConditionalGeneration.from_pretrained, AutoTokenizer | |
elif 'bart-large-cnn-samsum' in model_name or 'flan-t5-base-samsum' in model_name: | |
from transformers import pipeline | |
return pipeline, "summarization" | |
elif reward_type or 'OpenAssistant/reward-model'.lower() in model_name.lower(): | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
return AutoModelForSequenceClassification.from_pretrained, AutoTokenizer | |
else: | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
model_loader = AutoModelForCausalLM | |
tokenizer_loader = AutoTokenizer | |
return model_loader.from_pretrained, tokenizer_loader | |
def get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token): | |
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
padding_side='left') | |
tokenizer.pad_token_id = 0 # different from the eos token | |
# when generating, we will use the logits of right-most token to predict the next token | |
# so the padding should be on the left, | |
# e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference | |
tokenizer.padding_side = "left" # Allow batched inference | |
return tokenizer | |