pseudotensor commited on
Commit
65121b5
·
1 Parent(s): 80d4e55

Update with h2oGPT hash 321b64cb3f52f33f91b6052f5edea590b829aaa1

Browse files
Files changed (5) hide show
  1. app.py +187 -1015
  2. finetune.py +176 -125
  3. requirements.txt +2 -1
  4. stopping.py +0 -112
  5. utils.py +121 -1
app.py CHANGED
@@ -1,10 +1,10 @@
1
  import functools
2
- import inspect
3
  import sys
4
  import os
5
  import traceback
6
  import typing
7
- from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output, s3up
 
8
 
9
  SEED = 1236
10
  set_seed(SEED)
@@ -17,29 +17,21 @@ import pandas as pd
17
  import fire
18
  import torch
19
  from peft import PeftModel
20
- from transformers import GenerationConfig, StoppingCriteriaList, AutoModel
21
  from accelerate import init_empty_weights, infer_auto_device_map
22
 
23
  from prompter import Prompter
24
 
25
- from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \
26
- human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower
27
- from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub
28
-
29
- is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
30
- is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
31
- is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
32
- is_low_mem = is_hf # assumes run on 24GB consumer GPU
33
- admin_pass = os.getenv("ADMIN_PASS")
34
- # will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
35
- raise_generate_gpu_exceptions = True
36
 
37
  eval_extra_columns = ['prompt', 'response', 'score']
38
 
 
39
  def main(
40
  load_8bit: bool = False,
41
  load_half: bool = True,
42
- infer_devices: bool = True,
43
  base_model: str = '',
44
  tokenizer_base_model: str = '',
45
  lora_weights: str = "",
@@ -59,7 +51,6 @@ def main(
59
  early_stopping: Union[bool, str] = None,
60
  max_time: float = None,
61
 
62
- llama_type: bool = None,
63
  debug: bool = False,
64
  save_dir: str = None,
65
  share: bool = True,
@@ -74,6 +65,7 @@ def main(
74
  gradio_avoid_processing_markdown: bool = False,
75
  chat: bool = True,
76
  chat_history: int = 4096, # character length of chat context/history
 
77
  stream_output: bool = True,
78
  show_examples: bool = None,
79
  verbose: bool = False,
@@ -84,6 +76,10 @@ def main(
84
  # to be able to free GPU memory when model is swapped
85
  login_mode_if_model0: bool = False,
86
  block_gradio_exit: bool = True,
 
 
 
 
87
 
88
  sanitize_user_prompt: bool = True,
89
  sanitize_bot_response: bool = True,
@@ -97,11 +93,23 @@ def main(
97
  eval_sharegpt_prompts_only: int = 0,
98
  eval_sharegpt_prompts_only_seed: int = 1234,
99
  eval_sharegpt_as_output: bool = False,
 
 
100
  ):
 
 
 
 
 
 
 
 
 
101
  # allow set token directly
102
  use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
103
 
104
  if is_public:
 
105
  temperature = 0.4
106
  top_p = 0.85
107
  top_k = 70
@@ -120,6 +128,11 @@ def main(
120
  score_model = os.getenv('SCORE_MODEL', score_model)
121
  if score_model == 'None':
122
  score_model = ''
 
 
 
 
 
123
 
124
  # get defaults
125
  model_lower = base_model.lower()
@@ -170,10 +183,10 @@ def main(
170
  assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
171
  output = data[i]['conversations'][turn_start + 1]['value']
172
  examplenew = example1.copy()
173
- assert not chat, "No gradio must use chat=False, uses nochat isntruct"
174
  examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
175
  examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
176
- examplenew[eval_func_param_names.index('context')] = '' # no context
177
  examples.append(examplenew)
178
  responses.append(output)
179
 
@@ -193,7 +206,10 @@ def main(
193
  used_lora_weights)
194
  eval_filename = os.path.join(scoring_path, eval_filename)
195
 
196
- with torch.device("cuda"):
 
 
 
197
  # ensure was set right above before examples generated
198
  assert not stream_output, "stream_output=True does not make sense with example loop"
199
  import time
@@ -205,7 +221,10 @@ def main(
205
  if not eval_sharegpt_as_output:
206
  model, tokenizer, device = get_model(**locals())
207
  model_state = [model, tokenizer, device, base_model]
208
- fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir)
 
 
 
209
  else:
210
  assert eval_sharegpt_prompts_only > 0
211
 
@@ -230,7 +249,8 @@ def main(
230
  print("-" * 105)
231
  # fun yields as generator, so have to iterate over it
232
  # Also means likely do NOT want --stream_output=True, else would show all generations
233
- for res in fun(*tuple(ex), exi=exi):
 
234
  print(res)
235
  if smodel:
236
  score_with_prompt = False
@@ -240,8 +260,11 @@ def main(
240
  prompt = prompter.generate_prompt(data_point)
241
  else:
242
  # just raw input and output
243
- assert iinput in [None, ''] # should be no iinput
244
- assert context in [None, ''] # should be no context
 
 
 
245
  prompt = instruction
246
  cutoff_len = 768 if is_low_mem else 2048
247
  inputs = stokenizer(prompt, res,
@@ -251,7 +274,7 @@ def main(
251
  try:
252
  score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
253
  except torch.cuda.OutOfMemoryError as e:
254
- print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
255
  traceback.print_exc()
256
  score = 0.0
257
  clear_torch_cache()
@@ -291,6 +314,22 @@ def main(
291
  return eval_filename
292
 
293
  if gradio:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294
  go_gradio(**locals())
295
 
296
 
@@ -347,6 +386,8 @@ def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward
347
  device_map = {'': n_gpus - 1}
348
  else:
349
  device_map = {'': min(n_gpus - 1, gpu_id)}
 
 
350
 
351
  load_in_8bit = model_kwargs.get('load_in_8bit', False)
352
  model_kwargs['device_map'] = device_map
@@ -373,7 +414,6 @@ def get_model(
373
  lora_weights: str = "",
374
  gpu_id: int = 0,
375
 
376
- llama_type: bool = None,
377
  reward_type: bool = None,
378
  local_files_only: bool = False,
379
  resume_download: bool = True,
@@ -392,12 +432,11 @@ def get_model(
392
  :param tokenizer_base_model: name/path of tokenizer
393
  :param lora_weights: name/path
394
  :param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1)
395
- :param llama_type: whether LLaMa type model
396
  :param reward_type: reward type model for sequence classification
397
  :param local_files_only: use local files instead of from HF
398
  :param resume_download: resume downloads from HF
399
  :param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo
400
- :parm compile: whether to compile torch model
401
  :param kwargs:
402
  :return:
403
  """
@@ -413,7 +452,16 @@ def get_model(
413
  assert base_model.strip(), (
414
  "Please choose a base model with --base_model (CLI) or in Models Tab (gradio)"
415
  )
416
- llama_type = llama_type or "llama" in base_model
 
 
 
 
 
 
 
 
 
417
  model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type)
418
  if not tokenizer_base_model:
419
  tokenizer_base_model = base_model
@@ -530,937 +578,6 @@ def get_score_model(**kwargs):
530
  return smodel, stokenizer, sdevice
531
 
532
 
533
- def go_gradio(**kwargs):
534
- # get default model
535
- all_kwargs = kwargs.copy()
536
- all_kwargs.update(locals())
537
- if kwargs.get('base_model') and not kwargs['login_mode_if_model0']:
538
- model0, tokenizer0, device = get_model(**all_kwargs)
539
- else:
540
- # if empty model, then don't load anything, just get gradio up
541
- model0, tokenizer0, device = None, None, None
542
- model_state0 = [model0, tokenizer0, device, kwargs['base_model']]
543
-
544
- # get score model
545
- smodel, stokenizer, sdevice = get_score_model(**all_kwargs)
546
-
547
- if 'mbart-' in kwargs['model_lower']:
548
- instruction_label_nochat = "Text to translate"
549
- else:
550
- instruction_label_nochat = "Instruction"
551
- instruction_label = "You (Shift-Enter or push Submit to send message)"
552
-
553
- title = 'h2oGPT'
554
- if kwargs['verbose']:
555
- description = f"""Model {kwargs['base_model']} Instruct dataset.
556
- For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
557
- Command: {str(' '.join(sys.argv))}
558
- Hash: {get_githash()}
559
- """
560
- else:
561
- description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).<br>"
562
- if is_public:
563
- description += "If this host is busy, try [gpt.h2o.ai 20B](https://gpt.h2o.ai) and [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) and [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)<br>"
564
- description += """<p><b> DISCLAIMERS: </b><ul><i><li>The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.</i></li>"""
565
- if kwargs['load_8bit']:
566
- description += """<i><li> Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.</i></li>"""
567
- description += """<i><li>Conversations may be used to improve h2oGPT. Do not share sensitive information.</i></li>"""
568
- description += """<i><li>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).</i></li></ul></p>"""
569
-
570
- if kwargs['verbose']:
571
- task_info_md = f"""
572
- ### Task: {kwargs['task_info']}"""
573
- else:
574
- task_info_md = ''
575
-
576
- css_code = """footer {visibility: hidden;}
577
- body{background:linear-gradient(#f5f5f5,#e5e5e5);}
578
- body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
579
-
580
- from gradio.themes.utils import Color, colors, fonts, sizes
581
- if kwargs['h2ocolors']:
582
- h2o_yellow = Color(
583
- name="yellow",
584
- c50="#fffef2",
585
- c100="#fff9e6",
586
- c200="#ffecb3",
587
- c300="#ffe28c",
588
- c400="#ffd659",
589
- c500="#fec925",
590
- c600="#e6ac00",
591
- c700="#bf8f00",
592
- c800="#a67c00",
593
- c900="#664d00",
594
- c950="#403000",
595
- )
596
- h2o_gray = Color(
597
- name="gray",
598
- c50="#f2f2f2",
599
- c100="#e5e5e5",
600
- c200="#cccccc",
601
- c300="#b2b2b2",
602
- c400="#999999",
603
- c500="#7f7f7f",
604
- c600="#666666",
605
- c700="#4c4c4c",
606
- c800="#333333",
607
- c900="#191919",
608
- c950="#0d0d0d",
609
- )
610
- colors_dict = dict(primary_hue=h2o_yellow,
611
- secondary_hue=h2o_yellow,
612
- neutral_hue=h2o_gray,
613
- spacing_size=sizes.spacing_md,
614
- radius_size=sizes.radius_md,
615
- text_size=sizes.text_md,
616
- )
617
- else:
618
- colors_dict = dict(primary_hue=colors.indigo,
619
- secondary_hue=colors.indigo,
620
- neutral_hue=colors.gray,
621
- spacing_size=sizes.spacing_md,
622
- radius_size=sizes.radius_md,
623
- text_size=sizes.text_md,
624
- )
625
-
626
- import gradio as gr
627
-
628
- if kwargs['gradio_avoid_processing_markdown']:
629
- from gradio_client import utils as client_utils
630
- from gradio.components import Chatbot
631
-
632
- # gradio has issue with taking too long to process input/output for markdown etc.
633
- # Avoid for now, allow raw html to render, good enough for chatbot.
634
- def _postprocess_chat_messages(self, chat_message: str):
635
- if chat_message is None:
636
- return None
637
- elif isinstance(chat_message, (tuple, list)):
638
- filepath = chat_message[0]
639
- mime_type = client_utils.get_mimetype(filepath)
640
- filepath = self.make_temp_copy_if_needed(filepath)
641
- return {
642
- "name": filepath,
643
- "mime_type": mime_type,
644
- "alt_text": chat_message[1] if len(chat_message) > 1 else None,
645
- "data": None, # These last two fields are filled in by the frontend
646
- "is_file": True,
647
- }
648
- elif isinstance(chat_message, str):
649
- return chat_message
650
- else:
651
- raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
652
-
653
- Chatbot._postprocess_chat_messages = _postprocess_chat_messages
654
-
655
- dark_js = """() => {
656
- if (document.querySelectorAll('.dark').length) {
657
- document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
658
- } else {
659
- document.querySelector('body').classList.add('dark');
660
- }
661
- }"""
662
-
663
- demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False)
664
- callback = gr.CSVLogger()
665
- # css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}'
666
- # demo = gr.Blocks(theme='gstaff/xkcd', css=css_code)
667
-
668
- model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
669
- if kwargs['base_model'].strip() not in model_options:
670
- lora_options = [kwargs['base_model'].strip()] + model_options
671
- lora_options = kwargs['extra_lora_options']
672
- if kwargs['lora_weights'].strip() not in lora_options:
673
- lora_options = [kwargs['lora_weights'].strip()] + lora_options
674
- # always add in no lora case
675
- # add fake space so doesn't go away in gradio dropdown
676
- no_lora_str = no_model_str = '[None/Remove]'
677
- lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double?
678
- # always add in no model case so can free memory
679
- # add fake space so doesn't go away in gradio dropdown
680
- model_options = [no_model_str] + model_options
681
-
682
- # transcribe, will be detranscribed before use by evaluate()
683
- if not kwargs['lora_weights'].strip():
684
- kwargs['lora_weights'] = no_lora_str
685
-
686
- if not kwargs['base_model'].strip():
687
- kwargs['base_model'] = no_model_str
688
-
689
- # transcribe for gradio
690
- kwargs['gpu_id'] = str(kwargs['gpu_id'])
691
-
692
- no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]'
693
- output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
694
- 'base_model') else no_model_msg
695
- output_label0_model2 = no_model_msg
696
-
697
- with demo:
698
- # avoid actual model/tokenizer here or anything that would be bad to deepcopy
699
- # https://github.com/gradio-app/gradio/issues/3558
700
- model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']])
701
- model_state2 = gr.State([None, None, None, None])
702
- model_options_state = gr.State([model_options])
703
- lora_options_state = gr.State([lora_options])
704
- gr.Markdown(
705
- f"""
706
- <h1 align="center"> {title}</h1>
707
-
708
- {description}
709
- {task_info_md}
710
- """)
711
- if is_hf:
712
- gr.HTML(
713
- '''<center><a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate this Space to skip the queue and run in a private space</center>''')
714
-
715
- # go button visible if
716
- base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
717
- go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")
718
- normal_block = gr.Row(visible=not base_wanted)
719
- with normal_block:
720
- with gr.Tabs():
721
- with gr.Row():
722
- col_nochat = gr.Column(visible=not kwargs['chat'])
723
- with col_nochat: # FIXME: for model comparison, and check rest
724
- text_output_nochat = gr.Textbox(lines=5, label=output_label0)
725
- instruction_nochat = gr.Textbox(
726
- lines=4, label=instruction_label_nochat,
727
- placeholder=kwargs['placeholder_instruction'],
728
- )
729
- iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
730
- placeholder=kwargs['placeholder_input'])
731
- submit_nochat = gr.Button("Submit")
732
- flag_btn_nochat = gr.Button("Flag")
733
- if not kwargs['auto_score']:
734
- with gr.Column(visible=kwargs['score_model']):
735
- score_btn_nochat = gr.Button("Score last prompt & response")
736
- score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
737
- else:
738
- with gr.Column(visible=kwargs['score_model']):
739
- score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
740
- col_chat = gr.Column(visible=kwargs['chat'])
741
- with col_chat:
742
- with gr.Row():
743
- text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400)
744
- text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style(
745
- height=kwargs['height'] or 400)
746
- with gr.Row():
747
- with gr.Column(scale=50):
748
- instruction = gr.Textbox(
749
- lines=4, label=instruction_label,
750
- placeholder=kwargs['placeholder_instruction'],
751
- )
752
- with gr.Row():
753
- submit = gr.Button(value='Submit').style(full_width=False, size='sm')
754
- stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm')
755
- with gr.Row():
756
- clear = gr.Button("New Conversation")
757
- flag_btn = gr.Button("Flag")
758
- if not kwargs['auto_score']: # FIXME: For checkbox model2
759
- with gr.Column(visible=kwargs['score_model']):
760
- with gr.Row():
761
- score_btn = gr.Button("Score last prompt & response").style(
762
- full_width=False, size='sm')
763
- score_text = gr.Textbox("Response Score: NA", show_label=False)
764
- score_res2 = gr.Row(visible=False)
765
- with score_res2:
766
- score_btn2 = gr.Button("Score last prompt & response 2").style(
767
- full_width=False, size='sm')
768
- score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
769
- else:
770
- with gr.Column(visible=kwargs['score_model']):
771
- score_text = gr.Textbox("Response Score: NA", show_label=False)
772
- score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
773
- retry = gr.Button("Regenerate")
774
- undo = gr.Button("Undo")
775
- with gr.TabItem("Input/Output"):
776
- with gr.Row():
777
- if 'mbart-' in kwargs['model_lower']:
778
- src_lang = gr.Dropdown(list(languages_covered().keys()),
779
- value=kwargs['src_lang'],
780
- label="Input Language")
781
- tgt_lang = gr.Dropdown(list(languages_covered().keys()),
782
- value=kwargs['tgt_lang'],
783
- label="Output Language")
784
- with gr.TabItem("Expert"):
785
- with gr.Row():
786
- with gr.Column():
787
- stream_output = gr.components.Checkbox(label="Stream output",
788
- value=kwargs['stream_output'])
789
- prompt_type = gr.Dropdown(prompt_types_strings,
790
- value=kwargs['prompt_type'], label="Prompt Type",
791
- visible=not is_public)
792
- prompt_type2 = gr.Dropdown(prompt_types_strings,
793
- value=kwargs['prompt_type'], label="Prompt Type Model 2",
794
- visible=not is_public and False)
795
- do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k",
796
- value=kwargs['do_sample'])
797
- temperature = gr.Slider(minimum=0.01, maximum=3,
798
- value=kwargs['temperature'],
799
- label="Temperature",
800
- info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
801
- top_p = gr.Slider(minimum=0, maximum=1,
802
- value=kwargs['top_p'], label="Top p",
803
- info="Cumulative probability of tokens to sample from")
804
- top_k = gr.Slider(
805
- minimum=0, maximum=100, step=1,
806
- value=kwargs['top_k'], label="Top k",
807
- info='Num. tokens to sample from'
808
- )
809
- max_beams = 8 if not is_low_mem else 2
810
- num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
811
- value=min(max_beams, kwargs['num_beams']), label="Beams",
812
- info="Number of searches for optimal overall probability. "
813
- "Uses more GPU memory/compute")
814
- max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens']
815
- max_new_tokens = gr.Slider(
816
- minimum=1, maximum=max_max_new_tokens, step=1,
817
- value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
818
- )
819
- min_new_tokens = gr.Slider(
820
- minimum=0, maximum=max_max_new_tokens, step=1,
821
- value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
822
- )
823
- early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
824
- value=kwargs['early_stopping'])
825
- max_max_time = 60 * 5 if not is_low_mem else 60
826
- max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
827
- value=min(max_max_time, kwargs['max_time']), label="Max. time",
828
- info="Max. time to search optimal output.")
829
- repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
830
- value=kwargs['repetition_penalty'],
831
- label="Repetition Penalty")
832
- num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
833
- value=kwargs['num_return_sequences'],
834
- label="Number Returns", info="Must be <= num_beams",
835
- visible=not is_public)
836
- iinput = gr.Textbox(lines=4, label="Input",
837
- placeholder=kwargs['placeholder_input'],
838
- visible=not is_public)
839
- context = gr.Textbox(lines=3, label="System Pre-Context",
840
- info="Directly pre-appended without prompt processing",
841
- visible=not is_public and not kwargs['chat'])
842
- chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
843
- visible=not is_public)
844
-
845
- with gr.TabItem("Models"):
846
- load_msg = "Load-Unload Model/LORA" if not is_public \
847
- else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
848
- load_msg2 = "Load-Unload Model/LORA 2" if not is_public \
849
- else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
850
- compare_checkbox = gr.components.Checkbox(label="Compare Mode",
851
- value=False, visible=not is_public)
852
- with gr.Row():
853
- n_gpus = torch.cuda.device_count()
854
- n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
855
- with gr.Column():
856
- with gr.Row():
857
- with gr.Column(scale=50):
858
- model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
859
- value=kwargs['base_model'])
860
- lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
861
- value=kwargs['lora_weights'], visible=kwargs['show_lora'])
862
- with gr.Column(scale=1):
863
- load_model_button = gr.Button(load_msg)
864
- model_load8bit_checkbox = gr.components.Checkbox(
865
- label="Load 8-bit [Not all models support]",
866
- value=kwargs['load_8bit'])
867
- model_infer_devices_checkbox = gr.components.Checkbox(
868
- label="Infer Devices [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
869
- value=kwargs['infer_devices'])
870
- model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
871
- value=kwargs['gpu_id'])
872
- model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'])
873
- lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
874
- visible=kwargs['show_lora'])
875
- with gr.Row():
876
- with gr.Column(scale=50):
877
- new_model = gr.Textbox(label="New Model HF name/path")
878
- new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora'])
879
- with gr.Column(scale=1):
880
- add_model_button = gr.Button("Add new model name")
881
- add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora'])
882
- col_model2 = gr.Column(visible=False)
883
- with col_model2:
884
- with gr.Row():
885
- with gr.Column(scale=50):
886
- model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
887
- value=no_model_str)
888
- lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
889
- value=no_lora_str,
890
- visible=kwargs['show_lora'])
891
- with gr.Column(scale=1):
892
- load_model_button2 = gr.Button(load_msg2)
893
- model_load8bit_checkbox2 = gr.components.Checkbox(
894
- label="Load 8-bit 2 [Not all models support]",
895
- value=kwargs['load_8bit'])
896
- model_infer_devices_checkbox2 = gr.components.Checkbox(
897
- label="Infer Devices 2 [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
898
- value=kwargs[
899
- 'infer_devices'])
900
- model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
901
- value=kwargs['gpu_id'])
902
- # no model/lora loaded ever in model2 by default
903
- model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str)
904
- lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
905
- visible=kwargs['show_lora'])
906
- with gr.TabItem("System"):
907
- admin_row = gr.Row()
908
- with admin_row:
909
- admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public)
910
- admin_btn = gr.Button(value="Admin Access", visible=is_public)
911
- system_row = gr.Row(visible=not is_public)
912
- with system_row:
913
- with gr.Column():
914
- with gr.Row():
915
- system_btn = gr.Button(value='Get System Info')
916
- system_text = gr.Textbox(label='System Info')
917
-
918
- with gr.Row():
919
- zip_btn = gr.Button("Zip")
920
- zip_text = gr.Textbox(label="Zip file name")
921
- file_output = gr.File()
922
- with gr.Row():
923
- s3up_btn = gr.Button("S3UP")
924
- s3up_text = gr.Textbox(label='S3UP result')
925
-
926
- # Get flagged data
927
- zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
928
- zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text])
929
- s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text)
930
-
931
- def check_admin_pass(x):
932
- return gr.update(visible=x == admin_pass)
933
-
934
- def close_admin(x):
935
- return gr.update(visible=not (x == admin_pass))
936
-
937
- admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) \
938
- .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row)
939
-
940
- # Get inputs to evaluate()
941
- inputs_list = get_inputs_list(locals(), kwargs['model_lower'])
942
- from functools import partial
943
- all_kwargs = kwargs.copy()
944
- all_kwargs.update(locals())
945
- kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list}
946
- fun = partial(evaluate,
947
- **kwargs_evaluate)
948
- fun2 = partial(evaluate,
949
- **kwargs_evaluate)
950
-
951
- dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
952
- size="sm",
953
- )
954
- dark_mode_btn.click(
955
- None,
956
- None,
957
- None,
958
- _js=dark_js,
959
- api_name="dark",
960
- )
961
-
962
- # Control chat and non-chat blocks, which can be independently used by chat checkbox swap
963
- def col_nochat_fun(x):
964
- return gr.Column.update(visible=not x)
965
-
966
- def col_chat_fun(x):
967
- return gr.Column.update(visible=x)
968
-
969
- def context_fun(x):
970
- return gr.Textbox.update(visible=not x)
971
-
972
- chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox") \
973
- .then(col_chat_fun, chat, col_chat) \
974
- .then(context_fun, chat, context)
975
-
976
- # examples after submit or any other buttons for chat or no chat
977
- if kwargs['examples'] is not None and kwargs['show_examples']:
978
- gr.Examples(examples=kwargs['examples'], inputs=inputs_list)
979
-
980
- # Score
981
- def score_last_response(*args, nochat=False, model2=False):
982
- """ Similar to user() """
983
- args_list = list(args)
984
-
985
- max_length_tokenize = 512 if is_low_mem else 2048
986
- cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM
987
-
988
- if not nochat:
989
- history = args_list[-1]
990
- if history is None:
991
- if not model2:
992
- # maybe only doing first model, no need to complain
993
- print("Bad history in scoring last response, fix for now", flush=True)
994
- history = []
995
- if smodel is not None and \
996
- stokenizer is not None and \
997
- sdevice is not None and \
998
- history is not None and len(history) > 0 and \
999
- history[-1] is not None and \
1000
- len(history[-1]) >= 2:
1001
- os.environ['TOKENIZERS_PARALLELISM'] = 'false'
1002
-
1003
- question = history[-1][0]
1004
-
1005
- answer = history[-1][1]
1006
- else:
1007
- return 'Response Score: NA'
1008
- else:
1009
- answer = args_list[-1]
1010
- instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat')
1011
- question = args_list[instruction_nochat_arg_id]
1012
-
1013
- if question is None:
1014
- return 'Response Score: Bad Question'
1015
- if answer is None:
1016
- return 'Response Score: Bad Answer'
1017
-
1018
- question = question[-cutoff_len:]
1019
- answer = answer[-cutoff_len:]
1020
-
1021
- inputs = stokenizer(question, answer,
1022
- return_tensors="pt",
1023
- truncation=True,
1024
- max_length=max_length_tokenize).to(smodel.device)
1025
- try:
1026
- score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
1027
- except torch.cuda.OutOfMemoryError as e:
1028
- print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True)
1029
- del inputs
1030
- traceback.print_exc()
1031
- clear_torch_cache()
1032
- return 'Response Score: GPU OOM'
1033
- except (Exception, RuntimeError) as e:
1034
- if 'Expected all tensors to be on the same device' in str(e) or \
1035
- 'expected scalar type Half but found Float' in str(e) or \
1036
- 'probability tensor contains either' in str(e) or \
1037
- 'cublasLt ran into an error!' in str(e):
1038
- print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)),
1039
- flush=True)
1040
- traceback.print_exc()
1041
- clear_torch_cache()
1042
- return 'Response Score: GPU Error'
1043
- else:
1044
- raise
1045
- os.environ['TOKENIZERS_PARALLELISM'] = 'true'
1046
- return 'Response Score: {:.1%}'.format(score)
1047
-
1048
- def noop_score_last_response(*args, **kwargs):
1049
- return "Response Score: Disabled"
1050
- if kwargs['score_model']:
1051
- score_fun = score_last_response
1052
- else:
1053
- score_fun = noop_score_last_response
1054
-
1055
- score_args = dict(fn=score_fun,
1056
- inputs=inputs_list + [text_output],
1057
- outputs=[score_text],
1058
- )
1059
- score_args2 = dict(fn=partial(score_fun, model2=True),
1060
- inputs=inputs_list + [text_output2],
1061
- outputs=[score_text2],
1062
- )
1063
-
1064
- score_args_nochat = dict(fn=partial(score_fun, nochat=True),
1065
- inputs=inputs_list + [text_output_nochat],
1066
- outputs=[score_text_nochat],
1067
- )
1068
- if not kwargs['auto_score']:
1069
- score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') \
1070
- .then(**score_args2, queue=stream_output, api_name='score2')
1071
- score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output,
1072
- api_name='score_nochat')
1073
-
1074
- def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
1075
- """
1076
- User that fills history for bot
1077
- :param args:
1078
- :param undo:
1079
- :param sanitize_user_prompt:
1080
- :param model2:
1081
- :return:
1082
- """
1083
- args_list = list(args)
1084
- user_message = args_list[0]
1085
- input1 = args_list[1]
1086
- context1 = args_list[2]
1087
- if input1 and not user_message.endswith(':'):
1088
- user_message1 = user_message + ":" + input1
1089
- elif input1:
1090
- user_message1 = user_message + input1
1091
- else:
1092
- user_message1 = user_message
1093
- if sanitize_user_prompt:
1094
- from better_profanity import profanity
1095
- user_message1 = profanity.censor(user_message1)
1096
-
1097
- history = args_list[-1]
1098
- if undo and history:
1099
- history.pop()
1100
- args_list = args_list[:-1] # FYI, even if unused currently
1101
- if history is None:
1102
- if not model2:
1103
- # no need to complain so often unless model1
1104
- print("Bad history, fix for now", flush=True)
1105
- history = []
1106
- # ensure elements not mixed across models as output,
1107
- # even if input is currently same source
1108
- history = history.copy()
1109
- if undo:
1110
- return history
1111
- else:
1112
- # FIXME: compare, same history for now
1113
- return history + [[user_message1, None]]
1114
-
1115
- def bot(*args, retry=False):
1116
- """
1117
- bot that consumes history for user input
1118
- instruction (from input_list) itself is not consumed by bot
1119
- :param args:
1120
- :param retry:
1121
- :return:
1122
- """
1123
- args_list = list(args).copy()
1124
- history = args_list[-1] # model_state is -2
1125
- if retry and history:
1126
- history.pop()
1127
- if not history:
1128
- print("No history", flush=True)
1129
- return
1130
- # ensure output will be unique to models
1131
- history = history.copy()
1132
- instruction1 = history[-1][0]
1133
- context1 = ''
1134
- if kwargs['chat_history'] > 0:
1135
- prompt_type_arg_id = eval_func_param_names.index('prompt_type')
1136
- prompt_type1 = args_list[prompt_type_arg_id]
1137
- chat_arg_id = eval_func_param_names.index('chat')
1138
- chat1 = args_list[chat_arg_id]
1139
- context1 = ''
1140
- for histi in range(len(history) - 1):
1141
- data_point = dict(instruction=history[histi][0], input='', output=history[histi][1])
1142
- context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace(
1143
- '<br>', '\n')
1144
- if not context1.endswith('\n'):
1145
- context1 += '\n'
1146
- if context1 and not context1.endswith('\n'):
1147
- context1 += '\n' # ensure if terminates abruptly, then human continues on next line
1148
- args_list[0] = instruction1 # override original instruction with history from user
1149
- # only include desired chat history
1150
- args_list[2] = context1[-kwargs['chat_history']:]
1151
- model_state1 = args_list[-2]
1152
- if model_state1[0] is None or model_state1[0] == no_model_str:
1153
- return
1154
- args_list = args_list[:-2]
1155
- fun1 = partial(evaluate,
1156
- model_state1,
1157
- **kwargs_evaluate)
1158
- try:
1159
- for output in fun1(*tuple(args_list)):
1160
- bot_message = output
1161
- history[-1][1] = bot_message
1162
- yield history
1163
- except StopIteration:
1164
- yield history
1165
- except RuntimeError as e:
1166
- if "generator raised StopIteration" in str(e):
1167
- # assume last entry was bad, undo
1168
- history.pop()
1169
- yield history
1170
- raise
1171
- except Exception as e:
1172
- # put error into user input
1173
- history[-1][0] = "Exception: %s" % str(e)
1174
- yield history
1175
- raise
1176
- return
1177
-
1178
- # NORMAL MODEL
1179
- user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
1180
- inputs=inputs_list + [text_output],
1181
- outputs=text_output,
1182
- )
1183
- bot_args = dict(fn=bot,
1184
- inputs=inputs_list + [model_state] + [text_output],
1185
- outputs=text_output,
1186
- )
1187
- retry_bot_args = dict(fn=functools.partial(bot, retry=True),
1188
- inputs=inputs_list + [model_state] + [text_output],
1189
- outputs=text_output,
1190
- )
1191
- undo_user_args = dict(fn=functools.partial(user, undo=True),
1192
- inputs=inputs_list + [text_output],
1193
- outputs=text_output,
1194
- )
1195
-
1196
- # MODEL2
1197
- user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
1198
- inputs=inputs_list + [text_output2],
1199
- outputs=text_output2,
1200
- )
1201
- bot_args2 = dict(fn=bot,
1202
- inputs=inputs_list + [model_state2] + [text_output2],
1203
- outputs=text_output2,
1204
- )
1205
- retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
1206
- inputs=inputs_list + [model_state2] + [text_output2],
1207
- outputs=text_output2,
1208
- )
1209
- undo_user_args2 = dict(fn=functools.partial(user, undo=True),
1210
- inputs=inputs_list + [text_output2],
1211
- outputs=text_output2,
1212
- )
1213
-
1214
- def clear_instruct():
1215
- return gr.Textbox.update(value='')
1216
-
1217
- if kwargs['auto_score']:
1218
- # in case 2nd model, consume instruction first, so can clear quickly
1219
- # bot doesn't consume instruction itself, just history from user, so why works
1220
- submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
1221
- .then(**user_args2, queue=stream_output, api_name='instruction2') \
1222
- .then(clear_instruct, None, instruction) \
1223
- .then(**bot_args, api_name='instruction_bot') \
1224
- .then(**score_args, api_name='instruction_bot_score') \
1225
- .then(**bot_args2, api_name='instruction_bot2') \
1226
- .then(**score_args2, api_name='instruction_bot_score2') \
1227
- .then(clear_torch_cache)
1228
- submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
1229
- .then(**user_args2, queue=stream_output, api_name='submit2') \
1230
- .then(**bot_args, api_name='submit_bot') \
1231
- .then(clear_instruct, None, instruction) \
1232
- .then(**score_args, api_name='submit_bot_score') \
1233
- .then(**bot_args2, api_name='submit_bot2') \
1234
- .then(**score_args2, api_name='submit_bot_score2') \
1235
- .then(clear_torch_cache)
1236
- submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
1237
- .then(**user_args2, queue=stream_output, api_name='retry2') \
1238
- .then(clear_instruct, None, instruction) \
1239
- .then(**retry_bot_args, api_name='retry_bot') \
1240
- .then(**score_args, api_name='retry_bot_score') \
1241
- .then(**retry_bot_args2, api_name='retry_bot2') \
1242
- .then(**score_args2, api_name='retry_bot_score2') \
1243
- .then(clear_torch_cache)
1244
- submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
1245
- .then(**score_args, api_name='undo_score') \
1246
- .then(**undo_user_args2, queue=stream_output, api_name='undo2') \
1247
- .then(**score_args2, api_name='undo_score2') \
1248
- .then(clear_instruct, None, instruction)
1249
- else:
1250
- submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
1251
- .then(**user_args2, queue=stream_output, api_name='instruction2') \
1252
- .then(clear_instruct, None, instruction) \
1253
- .then(**bot_args, api_name='instruction_bot') \
1254
- .then(**bot_args2, api_name='instruction_bot2') \
1255
- .then(clear_torch_cache)
1256
- submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
1257
- .then(**user_args2, queue=stream_output, api_name='submit2') \
1258
- .then(clear_instruct, None, instruction) \
1259
- .then(**bot_args, api_name='submit_bot') \
1260
- .then(**bot_args2, api_name='submit_bot2') \
1261
- .then(clear_torch_cache)
1262
- submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
1263
- .then(**user_args2, queue=stream_output, api_name='retry2') \
1264
- .then(clear_instruct, None, instruction) \
1265
- .then(**retry_bot_args, api_name='retry_bot') \
1266
- .then(**retry_bot_args2, api_name='retry_bot2') \
1267
- .then(clear_torch_cache)
1268
- submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
1269
- .then(**undo_user_args2, queue=stream_output, api_name='undo2')
1270
-
1271
- # does both models
1272
- clear.click(lambda: None, None, text_output, queue=False, api_name='clear') \
1273
- .then(lambda: None, None, text_output2, queue=False, api_name='clear2')
1274
- # FIXME: compare
1275
- submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list,
1276
- outputs=text_output_nochat, api_name='submit_nochat') \
1277
- .then(**score_args_nochat, api_name='instruction_bot_score_nochat') \
1278
- .then(clear_torch_cache)
1279
-
1280
- def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
1281
- # ensure old model removed from GPU memory
1282
- if kwargs['debug']:
1283
- print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
1284
-
1285
- if isinstance(model_state_old[0], str) and model0 is not None:
1286
- # best can do, move model loaded at first to CPU
1287
- model0.cpu()
1288
-
1289
- if model_state_old[0] is not None and not isinstance(model_state_old[0], str):
1290
- try:
1291
- model_state_old[0].cpu()
1292
- except Exception as e:
1293
- # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data!
1294
- print("Unable to put model on CPU: %s" % str(e), flush=True)
1295
- del model_state_old[0]
1296
- model_state_old[0] = None
1297
-
1298
- if model_state_old[1] is not None and not isinstance(model_state_old[1], str):
1299
- del model_state_old[1]
1300
- model_state_old[1] = None
1301
-
1302
- clear_torch_cache()
1303
- if kwargs['debug']:
1304
- print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
1305
-
1306
- if model_name is None or model_name == no_model_str:
1307
- # no-op if no model, just free memory
1308
- # no detranscribe needed for model, never go into evaluate
1309
- lora_weights = no_lora_str
1310
- return [None, None, None, model_name], model_name, lora_weights, prompt_type_old
1311
-
1312
- all_kwargs1 = all_kwargs.copy()
1313
- all_kwargs1['base_model'] = model_name.strip()
1314
- all_kwargs1['load_8bit'] = load_8bit
1315
- all_kwargs1['infer_devices'] = infer_devices
1316
- all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe
1317
- model_lower = model_name.strip().lower()
1318
- if model_lower in inv_prompt_type_to_model_lower:
1319
- prompt_type1 = inv_prompt_type_to_model_lower[model_lower]
1320
- else:
1321
- prompt_type1 = prompt_type_old
1322
-
1323
- # detranscribe
1324
- if lora_weights == no_lora_str:
1325
- lora_weights = ''
1326
-
1327
- all_kwargs1['lora_weights'] = lora_weights.strip()
1328
- model1, tokenizer1, device1 = get_model(**all_kwargs1)
1329
- clear_torch_cache()
1330
-
1331
- if kwargs['debug']:
1332
- print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
1333
- return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1
1334
-
1335
- def dropdown_prompt_type_list(x):
1336
- return gr.Dropdown.update(value=x)
1337
-
1338
- def chatbot_list(x, model_used_in):
1339
- return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]')
1340
-
1341
- load_model_args = dict(fn=load_model,
1342
- inputs=[model_choice, lora_choice, model_state, prompt_type,
1343
- model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu],
1344
- outputs=[model_state, model_used, lora_used, prompt_type])
1345
- prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type)
1346
- chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output)
1347
- nochat_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output_nochat)
1348
- if not is_public:
1349
- load_model_event = load_model_button.click(**load_model_args) \
1350
- .then(**prompt_update_args) \
1351
- .then(**chatbot_update_args) \
1352
- .then(**nochat_update_args) \
1353
- .then(clear_torch_cache)
1354
-
1355
- load_model_args2 = dict(fn=load_model,
1356
- inputs=[model_choice2, lora_choice2, model_state2, prompt_type2,
1357
- model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2],
1358
- outputs=[model_state2, model_used2, lora_used2, prompt_type2])
1359
- prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2)
1360
- chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2)
1361
- if not is_public:
1362
- load_model_event2 = load_model_button2.click(**load_model_args2) \
1363
- .then(**prompt_update_args2) \
1364
- .then(**chatbot_update_args2) \
1365
- .then(clear_torch_cache)
1366
-
1367
- def dropdown_model_list(list0, x):
1368
- new_state = [list0[0] + [x]]
1369
- new_options = [*new_state[0]]
1370
- return gr.Dropdown.update(value=x, choices=new_options), \
1371
- gr.Dropdown.update(value=x, choices=new_options), \
1372
- '', new_state
1373
-
1374
- add_model_event = add_model_button.click(fn=dropdown_model_list,
1375
- inputs=[model_options_state, new_model],
1376
- outputs=[model_choice, model_choice2, new_model, model_options_state])
1377
-
1378
- def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2):
1379
- new_state = [list0[0] + [x]]
1380
- new_options = [*new_state[0]]
1381
- # don't switch drop-down to added lora if already have model loaded
1382
- x1 = x if model_used1 == no_model_str else lora_used1
1383
- x2 = x if model_used2 == no_model_str else lora_used2
1384
- return gr.Dropdown.update(value=x1, choices=new_options), \
1385
- gr.Dropdown.update(value=x2, choices=new_options), \
1386
- '', new_state
1387
-
1388
- add_lora_event = add_lora_button.click(fn=dropdown_lora_list,
1389
- inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2],
1390
- outputs=[lora_choice, lora_choice2, new_lora, lora_options_state])
1391
-
1392
- go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \
1393
- .then(lambda: gr.update(visible=True), None, normal_block) \
1394
- .then(**load_model_args).then(**prompt_update_args)
1395
-
1396
- def compare_textbox_fun(x):
1397
- return gr.Textbox.update(visible=x)
1398
-
1399
- def compare_column_fun(x):
1400
- return gr.Column.update(visible=x)
1401
-
1402
- def compare_prompt_fun(x):
1403
- return gr.Dropdown.update(visible=x)
1404
-
1405
- compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox") \
1406
- .then(compare_column_fun, compare_checkbox, col_model2) \
1407
- .then(compare_prompt_fun, compare_checkbox, prompt_type2) \
1408
- .then(compare_textbox_fun, compare_checkbox, score_text2)
1409
- # FIXME: add score_res2 in condition, but do better
1410
-
1411
- # callback for logging flagged input/output
1412
- callback.setup(inputs_list + [text_output], "flagged_data_points")
1413
- flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
1414
- api_name='flag')
1415
- flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
1416
- api_name='flag_nochat')
1417
-
1418
- def get_system_info():
1419
- return gr.Textbox.update(value=system_info_print())
1420
-
1421
- system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info')
1422
-
1423
- # don't pass text_output, don't want to clear output, just stop it
1424
- # FIXME: have to click once to stop output and second time to stop GPUs going
1425
- stop_btn.click(lambda: None, None, None,
1426
- cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
1427
- queue=False, api_name='stop').then(clear_torch_cache)
1428
- demo.load(None,None,None, _js=dark_js)
1429
-
1430
- demo.queue(concurrency_count=1)
1431
- favicon_path = "h2o-logo.svg"
1432
- demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
1433
- favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
1434
- print("Started GUI", flush=True)
1435
- if kwargs['block_gradio_exit']:
1436
- demo.block_thread()
1437
-
1438
-
1439
- input_args_list = ['model_state']
1440
- inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0']
1441
-
1442
-
1443
- def get_inputs_list(inputs_dict, model_lower):
1444
- """
1445
- map gradio objects in locals() to inputs for evaluate().
1446
- :param inputs_dict:
1447
- :param model_lower:
1448
- :return:
1449
- """
1450
- inputs_list_names = list(inspect.signature(evaluate).parameters)
1451
- inputs_list = []
1452
- for k in inputs_list_names:
1453
- if k == 'kwargs':
1454
- continue
1455
- if k in input_args_list + inputs_kwargs_list:
1456
- # these are added via partial, not taken as input
1457
- continue
1458
- if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']:
1459
- continue
1460
- inputs_list.append(inputs_dict[k])
1461
- return inputs_list
1462
-
1463
-
1464
  eval_func_param_names = ['instruction',
1465
  'iinput',
1466
  'context',
@@ -1509,12 +626,21 @@ def evaluate(
1509
  src_lang=None,
1510
  tgt_lang=None,
1511
  debug=False,
 
1512
  save_dir=None,
1513
  hard_stop_list=None,
1514
  sanitize_bot_response=True,
1515
  model_state0=None,
1516
- **kwargs,
 
 
1517
  ):
 
 
 
 
 
 
1518
  if debug:
1519
  locals_dict = locals().copy()
1520
  locals_dict.pop('model_state', None)
@@ -1555,6 +681,10 @@ def evaluate(
1555
  instruction = instruction_nochat
1556
  iinput = iinput_nochat
1557
 
 
 
 
 
1558
  data_point = dict(context=context, instruction=instruction, input=iinput)
1559
  prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
1560
  prompt = prompter.generate_prompt(data_point)
@@ -1647,7 +777,6 @@ def evaluate(
1647
  num_return_sequences=num_return_sequences,
1648
  renormalize_logits=True,
1649
  remove_invalid_values=True,
1650
- **kwargs,
1651
  )
1652
 
1653
  gen_kwargs = dict(input_ids=input_ids,
@@ -1695,62 +824,64 @@ def evaluate(
1695
  else:
1696
  print("WARNING: Special characters in prompt", flush=True)
1697
  if stream_output:
1698
- def generate(callback=None, **kwargs):
1699
- # re-order stopping so Stream first and get out all chunks before stop for other reasons
1700
- stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy()
1701
- kwargs['stopping_criteria'] = StoppingCriteriaList()
1702
- kwargs['stopping_criteria'].append(Stream(func=callback))
1703
- for stopping_criteria1 in stopping_criteria0:
1704
- kwargs['stopping_criteria'].append(stopping_criteria1)
1705
-
1706
- try:
1707
- model.generate(**kwargs)
1708
- except torch.cuda.OutOfMemoryError as e:
1709
- print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
1710
- flush=True)
1711
- if kwargs['input_ids'] is not None:
1712
- kwargs['input_ids'].cpu()
1713
- kwargs['input_ids'] = None
1714
- traceback.print_exc()
1715
- clear_torch_cache()
1716
- return
1717
- except (Exception, RuntimeError) as e:
1718
- if 'Expected all tensors to be on the same device' in str(e) or \
1719
- 'expected scalar type Half but found Float' in str(e) or \
1720
- 'probability tensor contains either' in str(e) or \
1721
- 'cublasLt ran into an error!' in str(e):
1722
- print(
1723
- "GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
1724
- flush=True)
1725
- traceback.print_exc()
1726
- clear_torch_cache()
1727
- if raise_generate_gpu_exceptions:
1728
- raise
1729
- return
1730
- else:
1731
- raise
1732
-
1733
- decoded_output = None
1734
- for output in CallbackToGenerator(generate, callback=None, **gen_kwargs):
1735
- decoded_output = decoder(output)
1736
- if output[-1] in [tokenizer.eos_token_id]:
1737
- if debug:
1738
- print("HIT EOS", flush=True)
1739
- break
1740
- if any(ele in decoded_output for ele in hard_stop_list):
1741
- raise StopIteration
1742
- yield prompter.get_response(decoded_output, prompt=inputs_decoded,
1743
  sanitize_bot_response=sanitize_bot_response)
1744
- if save_dir and decoded_output:
1745
- save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
1746
  else:
1747
  outputs = model.generate(**gen_kwargs)
1748
  outputs = [decoder(s) for s in outputs.sequences]
1749
  yield prompter.get_response(outputs, prompt=inputs_decoded,
1750
  sanitize_bot_response=sanitize_bot_response)
1751
- if save_dir and outputs and len(outputs) >= 1:
1752
- decoded_output = prompt + outputs[0]
1753
- save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754
 
1755
 
1756
  def get_generate_params(model_lower, chat,
@@ -1862,9 +993,9 @@ Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-pa
1862
  num_return_sequences = min(num_beams, num_return_sequences or 1)
1863
  do_sample = False if do_sample is None else do_sample
1864
  else:
1865
- temperature = 0.1 if temperature is None else temperature
1866
- top_p = 0.75 if top_p is None else top_p
1867
- top_k = 40 if top_k is None else top_k
1868
  if chat:
1869
  num_beams = num_beams or 1
1870
  else:
@@ -1872,7 +1003,7 @@ Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-pa
1872
  max_new_tokens = max_new_tokens or 256
1873
  repetition_penalty = repetition_penalty or 1.07
1874
  num_return_sequences = min(num_beams, num_return_sequences or 1)
1875
- do_sample = False if do_sample is None else do_sample
1876
  # doesn't include chat, instruction_nochat, iinput_nochat, added later
1877
  params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens,
1878
  early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample]
@@ -1948,12 +1079,53 @@ def languages_covered():
1948
  return covered
1949
 
1950
 
 
 
 
 
 
 
 
 
 
1951
  def test_test_prompt(prompt_type='instruct', data_point=0):
1952
  example_data_point = example_data_points[data_point]
1953
  example_data_point.pop('output', None)
1954
  return generate_prompt(example_data_point, prompt_type, False, False)
1955
 
1956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957
  if __name__ == "__main__":
1958
  print("""
1959
  WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
 
1
  import functools
 
2
  import sys
3
  import os
4
  import traceback
5
  import typing
6
+
7
+ from utils import set_seed, clear_torch_cache, save_generate_output, NullContext, KThread, wrapped_partial
8
 
9
  SEED = 1236
10
  set_seed(SEED)
 
17
  import fire
18
  import torch
19
  from peft import PeftModel
20
+ from transformers import GenerationConfig, StoppingCriteriaList, AutoModel, TextIteratorStreamer
21
  from accelerate import init_empty_weights, infer_auto_device_map
22
 
23
  from prompter import Prompter
24
 
25
+ from finetune import get_loaders, example_data_points, generate_prompt, human, bot, inv_prompt_type_to_model_lower
26
+ from stopping import StoppingCriteriaSub
 
 
 
 
 
 
 
 
 
27
 
28
  eval_extra_columns = ['prompt', 'response', 'score']
29
 
30
+
31
  def main(
32
  load_8bit: bool = False,
33
  load_half: bool = True,
34
+ infer_devices: bool = True, # really if to "control" devices now
35
  base_model: str = '',
36
  tokenizer_base_model: str = '',
37
  lora_weights: str = "",
 
51
  early_stopping: Union[bool, str] = None,
52
  max_time: float = None,
53
 
 
54
  debug: bool = False,
55
  save_dir: str = None,
56
  share: bool = True,
 
65
  gradio_avoid_processing_markdown: bool = False,
66
  chat: bool = True,
67
  chat_history: int = 4096, # character length of chat context/history
68
+ chat_context: bool = False, # use default context if human_bot
69
  stream_output: bool = True,
70
  show_examples: bool = None,
71
  verbose: bool = False,
 
76
  # to be able to free GPU memory when model is swapped
77
  login_mode_if_model0: bool = False,
78
  block_gradio_exit: bool = True,
79
+ concurrency_count: int = 1,
80
+ api_open: bool = False, # don't let API skip queue
81
+ allow_api: bool = True,
82
+ input_lines: int = 1,
83
 
84
  sanitize_user_prompt: bool = True,
85
  sanitize_bot_response: bool = True,
 
93
  eval_sharegpt_prompts_only: int = 0,
94
  eval_sharegpt_prompts_only_seed: int = 1234,
95
  eval_sharegpt_as_output: bool = False,
96
+
97
+ hard_stop_list: typing.List[str] = [],
98
  ):
99
+ is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
100
+ is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
101
+ is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
102
+ is_low_mem = is_hf # assumes run on 24GB consumer GPU
103
+ admin_pass = os.getenv("ADMIN_PASS")
104
+ # will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
105
+ # but becomes unrecoverable sometimes if raise, so just be silent for now
106
+ raise_generate_gpu_exceptions = not is_public
107
+
108
  # allow set token directly
109
  use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
110
 
111
  if is_public:
112
+ input_lines = 1 # ensure set, for ease of use
113
  temperature = 0.4
114
  top_p = 0.85
115
  top_k = 70
 
128
  score_model = os.getenv('SCORE_MODEL', score_model)
129
  if score_model == 'None':
130
  score_model = ''
131
+ concurrency_count = int(os.getenv('CONCURRENCY_COUNT', concurrency_count))
132
+ api_open = bool(int(os.getenv('API_OPEN', api_open)))
133
+ allow_api = bool(int(os.getenv('ALLOW_API', allow_api)))
134
+
135
+ n_gpus = torch.cuda.device_count()
136
 
137
  # get defaults
138
  model_lower = base_model.lower()
 
183
  assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
184
  output = data[i]['conversations'][turn_start + 1]['value']
185
  examplenew = example1.copy()
186
+ assert not chat, "No gradio must use chat=False, uses nochat instruct"
187
  examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
188
  examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
189
+ examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type)
190
  examples.append(examplenew)
191
  responses.append(output)
192
 
 
206
  used_lora_weights)
207
  eval_filename = os.path.join(scoring_path, eval_filename)
208
 
209
+ # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
210
+ context_class = NullContext() if n_gpus > 1 else torch.device("cuda")
211
+
212
+ with context_class:
213
  # ensure was set right above before examples generated
214
  assert not stream_output, "stream_output=True does not make sense with example loop"
215
  import time
 
221
  if not eval_sharegpt_as_output:
222
  model, tokenizer, device = get_model(**locals())
223
  model_state = [model, tokenizer, device, base_model]
224
+ fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir, is_low_mem=is_low_mem,
225
+ raise_generate_gpu_exceptions=raise_generate_gpu_exceptions,
226
+ chat_context=chat_context,
227
+ concurrency_count=concurrency_count)
228
  else:
229
  assert eval_sharegpt_prompts_only > 0
230
 
 
249
  print("-" * 105)
250
  # fun yields as generator, so have to iterate over it
251
  # Also means likely do NOT want --stream_output=True, else would show all generations
252
+ gener = fun(*tuple(ex), exi=exi) if eval_sharegpt_as_output else fun(*tuple(ex))
253
+ for res in gener:
254
  print(res)
255
  if smodel:
256
  score_with_prompt = False
 
260
  prompt = prompter.generate_prompt(data_point)
261
  else:
262
  # just raw input and output
263
+ if eval_sharegpt_prompts_only > 0:
264
+ # only our own examples have this filled at moment
265
+ assert iinput in [None, ''], iinput # should be no iinput
266
+ if not (chat_context and prompt_type == 'human_bot'):
267
+ assert context in [None, ''], context # should be no context
268
  prompt = instruction
269
  cutoff_len = 768 if is_low_mem else 2048
270
  inputs = stokenizer(prompt, res,
 
274
  try:
275
  score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
276
  except torch.cuda.OutOfMemoryError as e:
277
+ print("GPU OOM 1: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
278
  traceback.print_exc()
279
  score = 0.0
280
  clear_torch_cache()
 
314
  return eval_filename
315
 
316
  if gradio:
317
+ # imported here so don't require gradio to run generate
318
+ from gradio_runner import go_gradio
319
+
320
+ # get default model
321
+ all_kwargs = locals().copy()
322
+ if all_kwargs.get('base_model') and not all_kwargs['login_mode_if_model0']:
323
+ model0, tokenizer0, device = get_model(**all_kwargs)
324
+ else:
325
+ # if empty model, then don't load anything, just get gradio up
326
+ model0, tokenizer0, device = None, None, None
327
+ model_state0 = [model0, tokenizer0, device, all_kwargs['base_model']]
328
+
329
+ # get score model
330
+ smodel, stokenizer, sdevice = get_score_model(**all_kwargs)
331
+ score_model_state0 = [smodel, stokenizer, sdevice, score_model]
332
+
333
  go_gradio(**locals())
334
 
335
 
 
386
  device_map = {'': n_gpus - 1}
387
  else:
388
  device_map = {'': min(n_gpus - 1, gpu_id)}
389
+ if gpu_id == -1:
390
+ device_map = {'': 'cuda'}
391
 
392
  load_in_8bit = model_kwargs.get('load_in_8bit', False)
393
  model_kwargs['device_map'] = device_map
 
414
  lora_weights: str = "",
415
  gpu_id: int = 0,
416
 
 
417
  reward_type: bool = None,
418
  local_files_only: bool = False,
419
  resume_download: bool = True,
 
432
  :param tokenizer_base_model: name/path of tokenizer
433
  :param lora_weights: name/path
434
  :param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1)
 
435
  :param reward_type: reward type model for sequence classification
436
  :param local_files_only: use local files instead of from HF
437
  :param resume_download: resume downloads from HF
438
  :param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo
439
+ :param compile: whether to compile torch model
440
  :param kwargs:
441
  :return:
442
  """
 
452
  assert base_model.strip(), (
453
  "Please choose a base model with --base_model (CLI) or in Models Tab (gradio)"
454
  )
455
+
456
+ from transformers import AutoConfig
457
+ config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token)
458
+ llama_type_from_config = 'llama' in str(config).lower()
459
+ llama_type_from_name = "llama" in base_model.lower()
460
+ llama_type = llama_type_from_config or llama_type_from_name
461
+ if llama_type:
462
+ print("Detected as llama type from"
463
+ " config (%s) or name (%s)" % (llama_type_from_config, llama_type_from_name), flush=True)
464
+
465
  model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type)
466
  if not tokenizer_base_model:
467
  tokenizer_base_model = base_model
 
578
  return smodel, stokenizer, sdevice
579
 
580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581
  eval_func_param_names = ['instruction',
582
  'iinput',
583
  'context',
 
626
  src_lang=None,
627
  tgt_lang=None,
628
  debug=False,
629
+ concurrency_count=None,
630
  save_dir=None,
631
  hard_stop_list=None,
632
  sanitize_bot_response=True,
633
  model_state0=None,
634
+ is_low_mem=None,
635
+ raise_generate_gpu_exceptions=None,
636
+ chat_context=None,
637
  ):
638
+ # ensure passed these
639
+ assert concurrency_count is not None
640
+ assert is_low_mem is not None
641
+ assert raise_generate_gpu_exceptions is not None
642
+ assert chat_context is not None
643
+
644
  if debug:
645
  locals_dict = locals().copy()
646
  locals_dict.pop('model_state', None)
 
681
  instruction = instruction_nochat
682
  iinput = iinput_nochat
683
 
684
+ if not context:
685
+ # get hidden context if have one
686
+ context = get_context(chat_context, prompt_type)
687
+
688
  data_point = dict(context=context, instruction=instruction, input=iinput)
689
  prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
690
  prompt = prompter.generate_prompt(data_point)
 
777
  num_return_sequences=num_return_sequences,
778
  renormalize_logits=True,
779
  remove_invalid_values=True,
 
780
  )
781
 
782
  gen_kwargs = dict(input_ids=input_ids,
 
824
  else:
825
  print("WARNING: Special characters in prompt", flush=True)
826
  if stream_output:
827
+ #skip_prompt = prompt_type != 'plain'
828
+ skip_prompt = False
829
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=skip_prompt)
830
+ gen_kwargs.update(dict(streamer=streamer))
831
+ if debug:
832
+ KThread.show_threads()
833
+ target_func = generate_with_exceptions
834
+ if concurrency_count == 1:
835
+ # otherwise can't do this
836
+ KThread.kill_threads(target_func.__name__)
837
+ target = wrapped_partial(generate_with_exceptions, model.generate, prompt, inputs_decoded,
838
+ raise_generate_gpu_exceptions, **gen_kwargs)
839
+ thread = KThread(target=target)
840
+ thread.start()
841
+ outputs = ""
842
+ for new_text in streamer:
843
+ outputs += new_text
844
+ yield prompter.get_response(outputs, prompt=inputs_decoded,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845
  sanitize_bot_response=sanitize_bot_response)
 
 
846
  else:
847
  outputs = model.generate(**gen_kwargs)
848
  outputs = [decoder(s) for s in outputs.sequences]
849
  yield prompter.get_response(outputs, prompt=inputs_decoded,
850
  sanitize_bot_response=sanitize_bot_response)
851
+ if save_dir and outputs and len(outputs) >= 1:
852
+ decoded_output = prompt + outputs[0]
853
+ save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
854
+
855
+
856
+ def generate_with_exceptions(func, prompt, inputs_decoded, raise_generate_gpu_exceptions, **kwargs):
857
+ try:
858
+ func(**kwargs)
859
+ except torch.cuda.OutOfMemoryError as e:
860
+ print("GPU OOM 2: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
861
+ flush=True)
862
+ if kwargs['input_ids'] is not None:
863
+ kwargs['input_ids'].cpu()
864
+ kwargs['input_ids'] = None
865
+ traceback.print_exc()
866
+ clear_torch_cache()
867
+ return
868
+ except (Exception, RuntimeError) as e:
869
+ if 'Expected all tensors to be on the same device' in str(e) or \
870
+ 'expected scalar type Half but found Float' in str(e) or \
871
+ 'probability tensor contains either' in str(e) or \
872
+ 'cublasLt ran into an error!' in str(e) or \
873
+ 'mat1 and mat2 shapes cannot be multiplied' in str(e):
874
+ print(
875
+ "GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
876
+ flush=True)
877
+ traceback.print_exc()
878
+ clear_torch_cache()
879
+ if raise_generate_gpu_exceptions:
880
+ raise
881
+ return
882
+ else:
883
+ clear_torch_cache()
884
+ raise
885
 
886
 
887
  def get_generate_params(model_lower, chat,
 
993
  num_return_sequences = min(num_beams, num_return_sequences or 1)
994
  do_sample = False if do_sample is None else do_sample
995
  else:
996
+ temperature = 0.4 if temperature is None else temperature
997
+ top_p = 0.85 if top_p is None else top_p
998
+ top_k = 70 if top_k is None else top_k
999
  if chat:
1000
  num_beams = num_beams or 1
1001
  else:
 
1003
  max_new_tokens = max_new_tokens or 256
1004
  repetition_penalty = repetition_penalty or 1.07
1005
  num_return_sequences = min(num_beams, num_return_sequences or 1)
1006
+ do_sample = True if do_sample is None else do_sample
1007
  # doesn't include chat, instruction_nochat, iinput_nochat, added later
1008
  params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens,
1009
  early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample]
 
1079
  return covered
1080
 
1081
 
1082
+ def get_context(chat_context, prompt_type):
1083
+ if chat_context and prompt_type == 'human_bot':
1084
+ context0 = """<bot>: I am an intelligent, helpful, truthful, and fair assistant named h2oGPT, who will give accurate, balanced, and reliable responses. I will not respond with I don't know or I don't understand.
1085
+ <human>: I am a human person seeking useful assistance and request all questions be answered completely, and typically expect detailed responses. Give answers in numbered list format if several distinct but related items are being listed."""
1086
+ else:
1087
+ context0 = ''
1088
+ return context0
1089
+
1090
+
1091
  def test_test_prompt(prompt_type='instruct', data_point=0):
1092
  example_data_point = example_data_points[data_point]
1093
  example_data_point.pop('output', None)
1094
  return generate_prompt(example_data_point, prompt_type, False, False)
1095
 
1096
 
1097
+ def score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len):
1098
+ question = question[-cutoff_len:]
1099
+ answer = answer[-cutoff_len:]
1100
+
1101
+ inputs = stokenizer(question, answer,
1102
+ return_tensors="pt",
1103
+ truncation=True,
1104
+ max_length=max_length_tokenize).to(smodel.device)
1105
+ try:
1106
+ score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
1107
+ except torch.cuda.OutOfMemoryError as e:
1108
+ print("GPU OOM 3: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True)
1109
+ del inputs
1110
+ traceback.print_exc()
1111
+ clear_torch_cache()
1112
+ return 'Response Score: GPU OOM'
1113
+ except (Exception, RuntimeError) as e:
1114
+ if 'Expected all tensors to be on the same device' in str(e) or \
1115
+ 'expected scalar type Half but found Float' in str(e) or \
1116
+ 'probability tensor contains either' in str(e) or \
1117
+ 'cublasLt ran into an error!' in str(e):
1118
+ print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)),
1119
+ flush=True)
1120
+ traceback.print_exc()
1121
+ clear_torch_cache()
1122
+ return 'Response Score: GPU Error'
1123
+ else:
1124
+ raise
1125
+ os.environ['TOKENIZERS_PARALLELISM'] = 'true'
1126
+ return score
1127
+
1128
+
1129
  if __name__ == "__main__":
1130
  print("""
1131
  WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
finetune.py CHANGED
@@ -1,55 +1,22 @@
1
  import os
2
- import pathlib
3
- import random
4
- import shutil
5
- import subprocess
6
  import sys
7
  import time
8
- from datetime import datetime
9
  from typing import List, Union
 
10
  import fire
11
  import numpy as np
 
12
  import torch
13
- from datasets import load_dataset, concatenate_datasets
14
- import transformers
15
- import torch.distributed as dist
16
-
17
- from peft import (
18
- prepare_model_for_int8_training,
19
- LoraConfig,
20
- get_peft_model,
21
- get_peft_model_state_dict,
22
- set_peft_model_state_dict,
23
- )
24
-
25
- from peft import mapping
26
- lora_mappings = mapping.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING
27
 
28
 
29
  def log(*args, **kwargs):
30
  if int(os.environ.get("LOCAL_RANK", 0)) == 0:
 
 
31
  print(*args, **kwargs)
32
 
33
 
34
- try:
35
- import neptune
36
- from transformers.integrations import NeptuneCallback
37
-
38
- neptune_run = neptune.init_run(
39
- source_files=[],
40
- )
41
- log("Connected to Neptune.")
42
- except ImportError:
43
- neptune_run = None
44
- log("Please pip install neptune for tracking.")
45
- except neptune.exceptions.NeptuneMissingApiTokenException:
46
- neptune_run = None
47
- os.environ["NEPTUNE_MODE"] = 'debug'
48
- log("No neptune configured, set NEPTUNE_API_TOKEN env var.")
49
-
50
- from enum import Enum
51
-
52
-
53
  class PromptType(Enum):
54
  plain = 0
55
  instruct = 1
@@ -87,6 +54,7 @@ prompt_type_to_model_name = {
87
  'h2oai/h2ogpt-oasst1-512-12b',
88
  'h2oai/h2ogpt-oasst1-512-20b',
89
  'h2oai/h2ogpt-oig-oasst1-512-6.9b',
 
90
  ],
91
  'dai_faq': [],
92
  'summarize': [],
@@ -134,7 +102,7 @@ def train(
134
  tokenizer_base_model: str = None,
135
  # tokenizer_base_model: str = 'EleutherAI/gpt-neox-20b',
136
 
137
- data_path: str = None,
138
  data_col_dict: dict = None,
139
  # data_path: str = "./dai_docs.train.json",
140
  prompt_type: Union[str, int] = "plain", # "plain", "instruct", "quality", "human_bot", "dai_faq"
@@ -158,6 +126,7 @@ def train(
158
  micro_batch_size: int = 4,
159
  gradient_checkpointing=False, # unnecessary with gradient accumulation enabled
160
  fp16=True,
 
161
 
162
  # general training hyperparams
163
  num_epochs: float = 1,
@@ -175,12 +144,14 @@ def train(
175
  lora_dropout: float = 0.05,
176
  lora_target_modules: List[str] = None,
177
  llama_type: bool = None,
 
178
 
179
  # llm hyperparams
180
  train_on_inputs: bool = True, # if False, masks out inputs in loss
181
  group_by_length: bool = False, # if True, faster, but produces an odd training loss curve
182
  resume_from_checkpoint: str = None, # either training checkpoint or final adapter
183
- cutoff_len: int = 1024, # Good default, especially when have high quality non-trivial data
 
184
 
185
  # torch training params
186
  ddp: bool = True, # set to False if OOM with True, for multi-GPU model parallelism
@@ -190,8 +161,15 @@ def train(
190
  warmup_steps: int = 100,
191
  logging_steps: int = 1,
192
  save_steps: int = None, # must be round multiple of eval_steps
 
193
  add_eos_token: bool = False,
194
  ):
 
 
 
 
 
 
195
  # allow set token directly
196
  use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
197
 
@@ -211,7 +189,7 @@ def train(
211
  if not output_dir:
212
  output_dir = f"{base_model.split('/')[-1]}.{data_path.replace('/', '')}.{num_epochs}_epochs.{get_githash() or 'nogit'}.{run_id}"
213
  if os.path.exists(output_dir) and not resume_from_checkpoint:
214
- raise FileExistsError(f"output_dir based on run_id {run_id} already exists. Please pick a different run_id.")
215
  else:
216
  if os.path.exists(output_dir) and not resume_from_checkpoint:
217
  raise FileExistsError(f"output_dir {output_dir} already exists. Please pick a different output_dir, or specify a run_id instead.")
@@ -223,6 +201,21 @@ def train(
223
  tokenizer_base_model = base_model
224
  if llama_type is None:
225
  llama_type = "llama" in base_model.lower()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
  assert (
227
  base_model
228
  ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
@@ -254,7 +247,7 @@ def train(
254
 
255
  model = model_loader.from_pretrained(
256
  base_model,
257
- load_in_8bit=True,
258
  device_map=device_map,
259
  torch_dtype=torch.float16,
260
  max_memory=max_memory,
@@ -268,66 +261,28 @@ def train(
268
  model.is_parallelizable = True
269
  model.model_parallel = True
270
 
271
- tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
272
- local_files_only=local_files_only,
273
- resume_download=resume_download,
274
- use_auth_token=use_auth_token)
275
 
276
- tokenizer.pad_token_id = 0 # different from the eos token
277
- # when generating, we will use the logits of right-most token to predict the next token
278
- # so the padding should be on the left,
279
- # e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference
280
- tokenizer.padding_side = "left" # Allow batched inference
281
-
282
- def tokenize(prompt, add_eos_token=True):
283
- # there's probably a way to do this with the tokenizer settings
284
- # but again, gotta move fast
285
- result = tokenizer(
286
- prompt,
287
- truncation=True,
288
- max_length=cutoff_len,
289
- padding=False,
290
- return_tensors=None,
291
  )
292
- if (
293
- result["input_ids"][-1] != tokenizer.eos_token_id
294
- and len(result["input_ids"]) < cutoff_len
295
- and add_eos_token
296
- ):
297
- result["input_ids"].append(tokenizer.eos_token_id)
298
- result["attention_mask"].append(1)
299
 
300
- result["labels"] = result["input_ids"].copy()
 
 
 
 
 
 
 
301
 
302
- return result
 
 
303
 
304
- def generate_and_tokenize_prompt(data_point, add_eos=add_eos_token):
305
- full_prompt, _, _ = generate_prompt(data_point, prompt_type, False, False)
306
- tokenized_full_prompt = tokenize(full_prompt)
307
- if not train_on_inputs:
308
- user_prompt, _, _ = generate_prompt({**data_point, "output": ""}, prompt_type, False, False)
309
- tokenized_user_prompt = tokenize(user_prompt, add_eos_token=add_eos)
310
- user_prompt_len = len(tokenized_user_prompt["input_ids"])
311
- if add_eos:
312
- user_prompt_len -= 1
313
-
314
- # ignore_index=-100 ensures torch/tf don't include padding token id in CrossEntropyLoss
315
- tokenized_full_prompt["labels"] = [
316
- -100
317
- ] * user_prompt_len + tokenized_full_prompt["labels"][
318
- user_prompt_len:
319
- ] # could be sped up, probably
320
- return tokenized_full_prompt
321
-
322
- if "gpt-neox" not in base_model or True:
323
- model = prepare_model_for_int8_training(model)
324
- else:
325
- model = prepare_model_for_int8_training(
326
- model,
327
- output_embedding_layer_name="embed_out", # keep output logits in float32
328
- layer_norm_names=["layer_norm", "layernorm"], # keep all layer norms in higher precision
329
- )
330
  if lora_weights:
 
331
  from peft import PeftModel
332
  model = PeftModel.from_pretrained(
333
  model,
@@ -338,7 +293,7 @@ def train(
338
  resume_download=resume_download,
339
  use_auth_token=use_auth_token,
340
  )
341
- else:
342
  if lora_target_modules is None:
343
  base_model_lower = base_model.lower()
344
  if base_model_lower in lora_mappings:
@@ -386,7 +341,11 @@ def train(
386
  log(f"Checkpoint {checkpoint_name} not found")
387
 
388
  print(model)
389
- model.print_trainable_parameters() # Be more transparent about the % of trainable params.
 
 
 
 
390
 
391
  metrics = {}
392
  for name in supported_metrics:
@@ -405,6 +364,7 @@ def train(
405
  elif val_set_size < 1.0 and val_set_size != 0:
406
  raise RuntimeError("Fractional validation size not supported.")
407
 
 
408
  if valid_path:
409
  data = load_dataset("json", data_files={"train": data_path, "valid": valid_path})
410
  else:
@@ -427,10 +387,16 @@ def train(
427
  else:
428
  data_mix_in = load_dataset(data_mix_in_path)["train"] # can be large
429
  data_mix_in = data_mix_in.rename_columns(data_mix_in_col_dict or {})
 
 
 
 
 
 
430
 
431
  # only get as much as we need to balance
432
  valid_size = min(data_mix_in.num_rows // 2, val_set_size or 0)
433
- train_size = max(1, min(data_mix_in.num_rows - valid_size, int(num_rows * data_mix_in_factor)))
434
  mixin_small = data_mix_in.train_test_split(
435
  test_size=train_size + valid_size,
436
  shuffle=True, seed=np.random.randint(10000),
@@ -486,10 +452,20 @@ def train(
486
 
487
  assert train_data is not None
488
 
 
 
 
 
489
  # shuffle and tokenize data
490
  if train_data_mix_in:
491
  train_data = concatenate_datasets([train_data, train_data_mix_in])
492
- train_data = train_data.shuffle().map(generate_and_tokenize_prompt, num_proc=os.cpu_count() // torch.cuda.device_count())
 
 
 
 
 
 
493
  train_set_size = len(train_data)
494
 
495
  if valid_data and valid_data_mix_in:
@@ -498,7 +474,8 @@ def train(
498
  valid_data = valid_data_mix_in
499
 
500
  if valid_data:
501
- valid_data = valid_data.shuffle().map(generate_and_tokenize_prompt, num_proc=os.cpu_count() // torch.cuda.device_count())
 
502
  val_set_size = len(valid_data)
503
  else:
504
  val_set_size = 0
@@ -509,6 +486,22 @@ def train(
509
  del sample_row_dict['labels']
510
  log("Sample input: %s" % sample_row_dict)
511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512
  if neptune_run:
513
  neptune_callback = NeptuneCallback(run=neptune_run)
514
  callbacks = [neptune_callback]
@@ -578,6 +571,7 @@ def train(
578
  else:
579
  trainer_kwargs = dict()
580
 
 
581
  trainer = transformers.Trainer(
582
  model=model,
583
  tokenizer=tokenizer,
@@ -605,7 +599,7 @@ def train(
605
  eval_steps=eval_steps if val_set_size > 0 else None,
606
  save_steps=save_steps,
607
  output_dir=output_dir,
608
- save_total_limit=3,
609
  load_best_model_at_end=True if val_set_size > 0 else False,
610
  ddp_find_unused_parameters=False if ddp else None,
611
  group_by_length=group_by_length,
@@ -622,6 +616,8 @@ def train(
622
  model.config.use_cache = False
623
 
624
  old_state_dict = model.state_dict
 
 
625
  model.state_dict = (
626
  lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
627
  ).__get__(model, type(model))
@@ -629,7 +625,8 @@ def train(
629
  if torch.__version__ >= "2" and sys.platform != "win32":
630
  model = torch.compile(model)
631
  # WIP (not generally replacing layers until pytorch 2.1)
632
- torch.backends.cuda.enable_flash_sdp(True)
 
633
 
634
  if gpus > 1 and not ddp:
635
  assert trainer.is_model_parallel
@@ -649,6 +646,9 @@ def get_loaders(llama_type, model_name, reward_type):
649
  from transformers import LlamaForCausalLM, LlamaTokenizer
650
  model_loader = LlamaForCausalLM
651
  tokenizer_loader = LlamaTokenizer
 
 
 
652
  elif 'gpt2' in model_name.lower():
653
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
654
  return GPT2LMHeadModel, GPT2Tokenizer
@@ -676,31 +676,76 @@ def get_loaders(llama_type, model_name, reward_type):
676
  return model_loader, tokenizer_loader
677
 
678
 
679
- def get_githash():
680
- try:
681
- githash = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE).stdout.decode('utf-8')[0:-1]
682
- except:
683
- githash = ''
684
- return githash
 
 
 
 
 
 
 
685
 
686
 
687
- def copy_code(run_id):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688
  """
689
- copy code to track changes
690
- :param run_id:
 
691
  :return:
692
  """
693
- rnd_num = str(random.randint(0, 2 ** 31))
694
- run_id = 'run_' + str(run_id)
695
- os.makedirs(run_id, exist_ok=True)
696
- me_full = os.path.join(pathlib.Path(__file__).parent.resolve(), __file__)
697
- me_file = os.path.basename(__file__)
698
- new_me = os.path.join(run_id, me_file + '_' + get_githash())
699
- if os.path.isfile(new_me):
700
- new_me = os.path.join(run_id, me_file + '_' + get_githash() + '_' + rnd_num)
701
- shutil.copy(me_full, new_me)
702
- else:
703
- shutil.copy(me_full, new_me)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704
 
705
 
706
  def get_prompt(prompt_type, chat, context, reduced):
@@ -765,7 +810,13 @@ Current Time: {}
765
 
766
  PreInput = None
767
 
768
- PreResponse = bot
 
 
 
 
 
 
769
 
770
  terminate_response = [start, PreResponse]
771
  elif prompt_type in [3, "3", "dai_faq"]:
@@ -818,7 +869,7 @@ def generate_prompt(data_point, prompt_type, chat, reduced):
818
  assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type
819
  promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response = get_prompt(prompt_type, chat, context, reduced)
820
 
821
- prompt = context
822
 
823
  if input and promptA:
824
  prompt += f"""{promptA}"""
 
1
  import os
 
 
 
 
2
  import sys
3
  import time
4
+ from functools import partial
5
  from typing import List, Union
6
+ from enum import Enum
7
  import fire
8
  import numpy as np
9
+ from utils import get_githash, copy_code
10
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def log(*args, **kwargs):
14
  if int(os.environ.get("LOCAL_RANK", 0)) == 0:
15
+ if 'flush' not in kwargs:
16
+ kwargs['flush'] = True
17
  print(*args, **kwargs)
18
 
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  class PromptType(Enum):
21
  plain = 0
22
  instruct = 1
 
54
  'h2oai/h2ogpt-oasst1-512-12b',
55
  'h2oai/h2ogpt-oasst1-512-20b',
56
  'h2oai/h2ogpt-oig-oasst1-512-6.9b',
57
+ 'h2oai/h2ogpt-research-oasst1-512-30b', # private
58
  ],
59
  'dai_faq': [],
60
  'summarize': [],
 
102
  tokenizer_base_model: str = None,
103
  # tokenizer_base_model: str = 'EleutherAI/gpt-neox-20b',
104
 
105
+ data_path: str = "h2oai/openassistant_oasst1_h2ogpt",
106
  data_col_dict: dict = None,
107
  # data_path: str = "./dai_docs.train.json",
108
  prompt_type: Union[str, int] = "plain", # "plain", "instruct", "quality", "human_bot", "dai_faq"
 
126
  micro_batch_size: int = 4,
127
  gradient_checkpointing=False, # unnecessary with gradient accumulation enabled
128
  fp16=True,
129
+ train_8bit=True,
130
 
131
  # general training hyperparams
132
  num_epochs: float = 1,
 
144
  lora_dropout: float = 0.05,
145
  lora_target_modules: List[str] = None,
146
  llama_type: bool = None,
147
+ llama_flash_attn: bool = False,
148
 
149
  # llm hyperparams
150
  train_on_inputs: bool = True, # if False, masks out inputs in loss
151
  group_by_length: bool = False, # if True, faster, but produces an odd training loss curve
152
  resume_from_checkpoint: str = None, # either training checkpoint or final adapter
153
+ cutoff_len: int = 512, # larger values use more memory
154
+ drop_truncations: bool = False, # if True, drop any truncated long sequences
155
 
156
  # torch training params
157
  ddp: bool = True, # set to False if OOM with True, for multi-GPU model parallelism
 
161
  warmup_steps: int = 100,
162
  logging_steps: int = 1,
163
  save_steps: int = None, # must be round multiple of eval_steps
164
+ save_total_limit: int = 3,
165
  add_eos_token: bool = False,
166
  ):
167
+
168
+ if llama_flash_attn:
169
+ # Need to call this before importing transformers.
170
+ from llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
171
+ replace_llama_attn_with_flash_attn()
172
+
173
  # allow set token directly
174
  use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
175
 
 
189
  if not output_dir:
190
  output_dir = f"{base_model.split('/')[-1]}.{data_path.replace('/', '')}.{num_epochs}_epochs.{get_githash() or 'nogit'}.{run_id}"
191
  if os.path.exists(output_dir) and not resume_from_checkpoint:
192
+ raise FileExistsError(f"output_dir {output_dir} based on run_id {run_id} already exists. Please pick a different run_id.")
193
  else:
194
  if os.path.exists(output_dir) and not resume_from_checkpoint:
195
  raise FileExistsError(f"output_dir {output_dir} already exists. Please pick a different output_dir, or specify a run_id instead.")
 
201
  tokenizer_base_model = base_model
202
  if llama_type is None:
203
  llama_type = "llama" in base_model.lower()
204
+ if llama_type and llama_flash_attn:
205
+ import pkg_resources
206
+ try:
207
+ pkg_resources.get_distribution('flash_attn')
208
+ can_do_flash_attn = True
209
+ except (pkg_resources.DistributionNotFound, pkg_resources.ContextualVersionConflict):
210
+ can_do_flash_attn = False
211
+
212
+ if not can_do_flash_attn:
213
+ raise RuntimeError("""Flash attention not installed.
214
+ NOTE: for current pytorch 2.0, flash attention requires installing cuda 11.7 via https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local and then when running, to avoid installing driver, docs, samples, just install toolkit. Then when pip installing flash attention do:
215
+
216
+ CUDA_HOME=/usr/local/cuda-11.7 pip install flash-attn""")
217
+ from llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
218
+ replace_llama_attn_with_flash_attn()
219
  assert (
220
  base_model
221
  ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
 
247
 
248
  model = model_loader.from_pretrained(
249
  base_model,
250
+ load_in_8bit=train_8bit,
251
  device_map=device_map,
252
  torch_dtype=torch.float16,
253
  max_memory=max_memory,
 
261
  model.is_parallelizable = True
262
  model.model_parallel = True
263
 
264
+ tokenizer = get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token)
 
 
 
265
 
266
+ if train_8bit:
267
+ from peft import (
268
+ prepare_model_for_int8_training,
 
 
 
 
 
 
 
 
 
 
 
 
269
  )
 
 
 
 
 
 
 
270
 
271
+ if "gpt-neox" not in base_model or True:
272
+ model = prepare_model_for_int8_training(model)
273
+ else:
274
+ model = prepare_model_for_int8_training(
275
+ model,
276
+ output_embedding_layer_name="embed_out", # keep output logits in float32
277
+ layer_norm_names=["layer_norm", "layernorm"], # keep all layer norms in higher precision
278
+ )
279
 
280
+ from peft import LoraConfig, get_peft_model, set_peft_model_state_dict, utils
281
+ lora_mappings = utils.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
282
+ lora_mappings['distilgpt2'] = ["c_attn"]
283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284
  if lora_weights:
285
+
286
  from peft import PeftModel
287
  model = PeftModel.from_pretrained(
288
  model,
 
293
  resume_download=resume_download,
294
  use_auth_token=use_auth_token,
295
  )
296
+ elif lora_r > 0:
297
  if lora_target_modules is None:
298
  base_model_lower = base_model.lower()
299
  if base_model_lower in lora_mappings:
 
341
  log(f"Checkpoint {checkpoint_name} not found")
342
 
343
  print(model)
344
+ try:
345
+ # only for PeftModel
346
+ model.print_trainable_parameters() # Be more transparent about the % of trainable params.
347
+ except:
348
+ pass
349
 
350
  metrics = {}
351
  for name in supported_metrics:
 
364
  elif val_set_size < 1.0 and val_set_size != 0:
365
  raise RuntimeError("Fractional validation size not supported.")
366
 
367
+ from datasets import load_dataset, concatenate_datasets
368
  if valid_path:
369
  data = load_dataset("json", data_files={"train": data_path, "valid": valid_path})
370
  else:
 
387
  else:
388
  data_mix_in = load_dataset(data_mix_in_path)["train"] # can be large
389
  data_mix_in = data_mix_in.rename_columns(data_mix_in_col_dict or {})
390
+ mix_in_rows = int(num_rows * data_mix_in_factor)
391
+
392
+ if mix_in_rows > data_mix_in.num_rows:
393
+ # duplicate rows if mix-in is smaller than required
394
+ log("Duplicating mixin to compensate for its size for training size and mixin fraction")
395
+ data_mix_in = concatenate_datasets([data_mix_in] * int(np.ceil(mix_in_rows / data_mix_in.num_rows)))
396
 
397
  # only get as much as we need to balance
398
  valid_size = min(data_mix_in.num_rows // 2, val_set_size or 0)
399
+ train_size = max(1, min(data_mix_in.num_rows - valid_size, mix_in_rows))
400
  mixin_small = data_mix_in.train_test_split(
401
  test_size=train_size + valid_size,
402
  shuffle=True, seed=np.random.randint(10000),
 
452
 
453
  assert train_data is not None
454
 
455
+ generate_and_tokenize_prompt_fun = partial(generate_and_tokenize_prompt, prompt_type=prompt_type,
456
+ train_on_inputs=train_on_inputs, add_eos_token=add_eos_token,
457
+ cutoff_len=cutoff_len, tokenizer=tokenizer)
458
+
459
  # shuffle and tokenize data
460
  if train_data_mix_in:
461
  train_data = concatenate_datasets([train_data, train_data_mix_in])
462
+ log("Tokenizing %s training rows" % train_data.num_rows)
463
+ train_data = train_data.shuffle().map(generate_and_tokenize_prompt_fun, num_proc=os.cpu_count() // torch.cuda.device_count())
464
+ if drop_truncations:
465
+ log("avoid keeping truncated cases to avoid contaminating model with truncation cases. Original size: %s" % train_data.num_rows)
466
+ prune_long_sequences_func = partial(prune_long_sequences, cutoff_len=cutoff_len)
467
+ train_data = train_data.filter(prune_long_sequences_func, num_proc=os.cpu_count() // torch.cuda.device_count())
468
+ log("avoid keeping truncated cases to avoid contaminating model with truncation cases. New size: %s" % train_data.num_rows)
469
  train_set_size = len(train_data)
470
 
471
  if valid_data and valid_data_mix_in:
 
474
  valid_data = valid_data_mix_in
475
 
476
  if valid_data:
477
+ log("Tokenizing %s validation rows" % valid_data.num_rows)
478
+ valid_data = valid_data.shuffle().map(generate_and_tokenize_prompt_fun, num_proc=os.cpu_count() // torch.cuda.device_count())
479
  val_set_size = len(valid_data)
480
  else:
481
  val_set_size = 0
 
486
  del sample_row_dict['labels']
487
  log("Sample input: %s" % sample_row_dict)
488
 
489
+ try:
490
+ import neptune
491
+ from transformers.integrations import NeptuneCallback
492
+
493
+ neptune_run = neptune.init_run(
494
+ source_files=[],
495
+ )
496
+ log("Connected to Neptune.")
497
+ except ImportError:
498
+ neptune_run = None
499
+ log("Please pip install neptune for tracking.")
500
+ except neptune.exceptions.NeptuneMissingApiTokenException:
501
+ neptune_run = None
502
+ os.environ["NEPTUNE_MODE"] = 'debug'
503
+ log("No neptune configured, set NEPTUNE_API_TOKEN env var.")
504
+
505
  if neptune_run:
506
  neptune_callback = NeptuneCallback(run=neptune_run)
507
  callbacks = [neptune_callback]
 
571
  else:
572
  trainer_kwargs = dict()
573
 
574
+ import transformers
575
  trainer = transformers.Trainer(
576
  model=model,
577
  tokenizer=tokenizer,
 
599
  eval_steps=eval_steps if val_set_size > 0 else None,
600
  save_steps=save_steps,
601
  output_dir=output_dir,
602
+ save_total_limit=save_total_limit,
603
  load_best_model_at_end=True if val_set_size > 0 else False,
604
  ddp_find_unused_parameters=False if ddp else None,
605
  group_by_length=group_by_length,
 
616
  model.config.use_cache = False
617
 
618
  old_state_dict = model.state_dict
619
+ from peft import get_peft_model_state_dict
620
+
621
  model.state_dict = (
622
  lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
623
  ).__get__(model, type(model))
 
625
  if torch.__version__ >= "2" and sys.platform != "win32":
626
  model = torch.compile(model)
627
  # WIP (not generally replacing layers until pytorch 2.1)
628
+ if not llama_flash_attn:
629
+ torch.backends.cuda.enable_flash_sdp(True)
630
 
631
  if gpus > 1 and not ddp:
632
  assert trainer.is_model_parallel
 
646
  from transformers import LlamaForCausalLM, LlamaTokenizer
647
  model_loader = LlamaForCausalLM
648
  tokenizer_loader = LlamaTokenizer
649
+ elif 'distilgpt2' in model_name.lower():
650
+ from transformers import AutoModelForCausalLM, AutoTokenizer
651
+ return AutoModelForCausalLM, AutoTokenizer
652
  elif 'gpt2' in model_name.lower():
653
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
654
  return GPT2LMHeadModel, GPT2Tokenizer
 
676
  return model_loader, tokenizer_loader
677
 
678
 
679
+ def get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token):
680
+ tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
681
+ local_files_only=local_files_only,
682
+ resume_download=resume_download,
683
+ use_auth_token=use_auth_token)
684
+
685
+ tokenizer.pad_token_id = 0 # different from the eos token
686
+ # when generating, we will use the logits of right-most token to predict the next token
687
+ # so the padding should be on the left,
688
+ # e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference
689
+ tokenizer.padding_side = "left" # Allow batched inference
690
+
691
+ return tokenizer
692
 
693
 
694
+ def tokenize(prompt, tokenizer, cutoff_len, add_eos_token=False):
695
+ # there's probably a way to do this with the tokenizer settings
696
+ # but again, gotta move fast
697
+ result = tokenizer(
698
+ prompt,
699
+ truncation=True,
700
+ max_length=cutoff_len,
701
+ padding=False,
702
+ return_tensors=None,
703
+ )
704
+ if (
705
+ result["input_ids"][-1] != tokenizer.eos_token_id
706
+ and len(result["input_ids"]) < cutoff_len
707
+ and add_eos_token
708
+ ):
709
+ result["input_ids"].append(tokenizer.eos_token_id)
710
+ result["attention_mask"].append(1)
711
+
712
+ result["labels"] = result["input_ids"].copy()
713
+
714
+ return result
715
+
716
+
717
+ def prune_long_sequences(data_point, cutoff_len=None):
718
  """
719
+ Prune if too long for tokenizer, so truncation doesn't lead training to learn from truncated language
720
+ :param data_point:
721
+ :param cutoff_len:
722
  :return:
723
  """
724
+ assert cutoff_len is not None
725
+ return len(data_point['input_ids']) < cutoff_len
726
+
727
+
728
+ def generate_and_tokenize_prompt(data_point, prompt_type=None, train_on_inputs=False, add_eos_token=False,
729
+ cutoff_len=None, tokenizer=None):
730
+ assert prompt_type is not None
731
+ assert cutoff_len is not None
732
+ assert tokenizer is not None
733
+ full_prompt, _, _ = generate_prompt(data_point, prompt_type, False, False)
734
+ tokenized_full_prompt = tokenize(full_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token)
735
+ if not train_on_inputs:
736
+ user_prompt, _, _ = generate_prompt({**data_point, "output": ""}, prompt_type, False, False)
737
+ tokenized_user_prompt = tokenize(user_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token)
738
+ user_prompt_len = len(tokenized_user_prompt["input_ids"])
739
+ if add_eos_token:
740
+ user_prompt_len -= 1
741
+
742
+ # ignore_index=-100 ensures torch/tf don't include padding token id in CrossEntropyLoss
743
+ tokenized_full_prompt["labels"] = [
744
+ -100
745
+ ] * user_prompt_len + tokenized_full_prompt["labels"][
746
+ user_prompt_len:
747
+ ] # could be sped up, probably
748
+ return tokenized_full_prompt
749
 
750
 
751
  def get_prompt(prompt_type, chat, context, reduced):
 
810
 
811
  PreInput = None
812
 
813
+ if reduced:
814
+ # when making context, want it to appear as-if LLM generated, which starts with space after :
815
+ PreResponse = bot + ' '
816
+ else:
817
+ # normally LLM adds space after this, because was how trained.
818
+ # if add space here, non-unique tokenization will often make LLM produce wrong output
819
+ PreResponse = bot
820
 
821
  terminate_response = [start, PreResponse]
822
  elif prompt_type in [3, "3", "dai_faq"]:
 
869
  assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type
870
  promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response = get_prompt(prompt_type, chat, context, reduced)
871
 
872
+ prompt = context if not reduced else ''
873
 
874
  if input and promptA:
875
  prompt += f"""{promptA}"""
requirements.txt CHANGED
@@ -19,9 +19,10 @@ pandas==2.0.0
19
  matplotlib==3.7.1
20
  loralib==0.1.1
21
  bitsandbytes==0.38.1
22
- git+https://github.com/huggingface/peft.git@098962fa6515f2e4fe83a757f5995d3ffbb1c373
23
  transformers==4.28.1
24
  tokenizers==0.13.3
 
25
 
26
  # optional for generate
27
  pynvml==11.5.0
 
19
  matplotlib==3.7.1
20
  loralib==0.1.1
21
  bitsandbytes==0.38.1
22
+ git+https://github.com/huggingface/peft.git@e8f66b8a425eced6c592089d40b8d33d82c2b2f0
23
  transformers==4.28.1
24
  tokenizers==0.13.3
25
+ APScheduler==3.10.1
26
 
27
  # optional for generate
28
  pynvml==11.5.0
stopping.py CHANGED
@@ -25,115 +25,3 @@ class StoppingCriteriaSub(StoppingCriteria):
25
  # print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
26
  # print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
27
  return False
28
-
29
-
30
- class Stream(StoppingCriteria):
31
- """
32
- This class can be used to callback during generation. Keep
33
- in mind for decoder-only type of transformers, this will include the initial prompted tokens.
34
-
35
- Args:
36
- func (`callable`):
37
- A callable function to apply on first input in list every iteration of generation
38
- """
39
-
40
- def __init__(self, func=None):
41
- self.func = func
42
-
43
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
44
- if self.func is not None:
45
- # only consume first of multiple responses
46
- self.func(input_ids[0])
47
- return False
48
-
49
-
50
- class CallbackToGenerator(collections.abc.Generator):
51
- """
52
- A generator wrapper for a function that invokes a callback multiple times.
53
-
54
- Calling `send` on the generator emits a value from one callback, and returns
55
- the next.
56
-
57
- Note this starts a background thread
58
- """
59
-
60
- def __init__(self, func, *args, callback=None, **kwargs):
61
- self.func = func
62
- self.args = args
63
- self.kwargs = kwargs
64
- self.callback = callback
65
-
66
- self._ready_queue = Queue(1)
67
- self._done_queue = Queue(1)
68
- self._done_holder = [False]
69
-
70
- # local to avoid reference cycles
71
- ready_queue = self._ready_queue
72
- done_queue = self._done_queue
73
- done_holder = self._done_holder
74
-
75
- def val_callback(value):
76
- done_queue.put((False, value))
77
- cmd, val = ready_queue.get()
78
- if cmd == 'send':
79
- return val
80
- elif cmd == 'throw':
81
- raise val
82
- else:
83
- assert False # pragma: no cover
84
-
85
- def thread_func():
86
- while True:
87
- cmd, val = ready_queue.get()
88
- if cmd == 'send' and val is not None:
89
- done_queue.put((True, TypeError("can't send non-None value to a just-started generator")))
90
- continue
91
- break
92
- try:
93
- if cmd == 'throw':
94
- raise val
95
- ret = func(callback=val_callback, **self.kwargs)
96
- raise StopIteration(ret) if ret is not None else StopIteration
97
- except BaseException as e:
98
- done_holder[0] = True
99
- done_queue.put((True, e))
100
-
101
- self._thread = Thread(target=thread_func)
102
- self._thread.start()
103
-
104
- def _put(self, *args):
105
- if self._done_holder[0]:
106
- raise StopIteration
107
- self._ready_queue.put(args)
108
- is_exception, val = self._done_queue.get()
109
- if is_exception:
110
- try:
111
- raise val
112
- finally:
113
- # prevent val's traceback containing a reference cycle
114
- del val
115
- else:
116
- return val
117
-
118
- def send(self, value):
119
- return self._put('send', value)
120
-
121
- def throw(self, exc):
122
- return self._put('throw', exc)
123
-
124
- def close(self):
125
- try:
126
- self.throw(GeneratorExit)
127
- except StopIteration:
128
- self._thread.join()
129
- except GeneratorExit:
130
- self._thread.join()
131
- except BaseException:
132
- self._thread.join()
133
- raise
134
- else:
135
- # yielded again, can't clean up the thread
136
- raise RuntimeError('Task with callback ignored GeneratorExit')
137
-
138
- def __del__(self):
139
- self.close()
 
25
  # print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
26
  # print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
27
  return False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils.py CHANGED
@@ -1,6 +1,12 @@
 
1
  import os
2
  import gc
 
3
  import random
 
 
 
 
4
  import time
5
  import traceback
6
  import zipfile
@@ -8,7 +14,6 @@ from datetime import datetime
8
  import filelock
9
  import numpy as np
10
  import pandas as pd
11
- import torch
12
 
13
 
14
  def set_seed(seed: int):
@@ -16,6 +21,7 @@ def set_seed(seed: int):
16
  Sets the seed of the entire notebook so results are the same every time we run.
17
  This is for REPRODUCIBILITY.
18
  """
 
19
  np.random.seed(seed)
20
  random_state = np.random.RandomState(seed)
21
  random.seed(seed)
@@ -39,12 +45,18 @@ def flatten_list(lis):
39
 
40
 
41
  def clear_torch_cache():
 
42
  if torch.cuda.is_available:
43
  torch.cuda.empty_cache()
44
  torch.cuda.ipc_collect()
45
  gc.collect()
46
 
47
 
 
 
 
 
 
48
  def system_info():
49
  import psutil
50
 
@@ -184,3 +196,111 @@ def _s3up(filename):
184
  )
185
  if ret in [None, '']:
186
  return "Successfully uploaded %s" % filename
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
  import os
3
  import gc
4
+ import pathlib
5
  import random
6
+ import shutil
7
+ import subprocess
8
+ import sys
9
+ import threading
10
  import time
11
  import traceback
12
  import zipfile
 
14
  import filelock
15
  import numpy as np
16
  import pandas as pd
 
17
 
18
 
19
  def set_seed(seed: int):
 
21
  Sets the seed of the entire notebook so results are the same every time we run.
22
  This is for REPRODUCIBILITY.
23
  """
24
+ import torch
25
  np.random.seed(seed)
26
  random_state = np.random.RandomState(seed)
27
  random.seed(seed)
 
45
 
46
 
47
  def clear_torch_cache():
48
+ import torch
49
  if torch.cuda.is_available:
50
  torch.cuda.empty_cache()
51
  torch.cuda.ipc_collect()
52
  gc.collect()
53
 
54
 
55
+ def get_torch_allocated():
56
+ import torch
57
+ return torch.cuda.memory_allocated()
58
+
59
+
60
  def system_info():
61
  import psutil
62
 
 
196
  )
197
  if ret in [None, '']:
198
  return "Successfully uploaded %s" % filename
199
+
200
+
201
+ def get_githash():
202
+ try:
203
+ githash = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE).stdout.decode('utf-8')[0:-1]
204
+ except:
205
+ githash = ''
206
+ return githash
207
+
208
+
209
+ def copy_code(run_id):
210
+ """
211
+ copy code to track changes
212
+ :param run_id:
213
+ :return:
214
+ """
215
+ rnd_num = str(random.randint(0, 2 ** 31))
216
+ run_id = 'run_' + str(run_id)
217
+ os.makedirs(run_id, exist_ok=True)
218
+ me_full = os.path.join(pathlib.Path(__file__).parent.resolve(), __file__)
219
+ me_file = os.path.basename(__file__)
220
+ new_me = os.path.join(run_id, me_file + '_' + get_githash())
221
+ if os.path.isfile(new_me):
222
+ new_me = os.path.join(run_id, me_file + '_' + get_githash() + '_' + rnd_num)
223
+ shutil.copy(me_full, new_me)
224
+ else:
225
+ shutil.copy(me_full, new_me)
226
+
227
+
228
+ class NullContext(threading.local):
229
+ """No-op context manager, executes block without doing any additional processing.
230
+
231
+ Used as a stand-in if a particular block of code is only sometimes
232
+ used with a normal context manager:
233
+ """
234
+ def __init__(self, *args, **kwargs):
235
+ pass
236
+
237
+ def __enter__(self):
238
+ return self
239
+
240
+ def __exit__(self, exc_type, exc_value, exc_traceback):
241
+ self.finally_act()
242
+
243
+ def finally_act(self):
244
+ pass
245
+
246
+
247
+ class KThread(threading.Thread):
248
+ """Thread with a kill method."""
249
+
250
+ def __init__(self, *args, **keywords):
251
+ threading.Thread.__init__(self, *args, **keywords)
252
+ self.killed = False
253
+
254
+ def start(self):
255
+ """Start the thread."""
256
+ self.__run_backup = self.run
257
+ self.run = self.__run # Force the Thread to install our trace.
258
+ threading.Thread.start(self)
259
+
260
+ def __run(self):
261
+ """install trace."""
262
+ sys.settrace(self.globaltrace)
263
+ self.__run_backup()
264
+ self.run = self.__run_backup
265
+
266
+ def globaltrace(self, frame, why, arg):
267
+ if why == 'call':
268
+ return self.localtrace
269
+ else:
270
+ return None
271
+
272
+ def localtrace(self, frame, why, arg):
273
+ if self.killed:
274
+ if why == 'line':
275
+ raise SystemExit()
276
+ return self.localtrace
277
+
278
+ def kill(self):
279
+ self.killed = True
280
+
281
+ @staticmethod
282
+ def show_threads():
283
+ for thread in threading.enumerate():
284
+ print(thread.name, flush=True)
285
+
286
+ @staticmethod
287
+ def kill_threads(name):
288
+ for thread in threading.enumerate():
289
+ if name in thread.name:
290
+ print(thread)
291
+ print("Trying to kill %s" % thread.ident)
292
+ thread.kill()
293
+ print(thread)
294
+
295
+
296
+ def wrapped_partial(func, *args, **kwargs):
297
+ """
298
+ Give partial properties of normal function, like __name__ attribute etc.
299
+ :param func:
300
+ :param args:
301
+ :param kwargs:
302
+ :return:
303
+ """
304
+ partial_func = functools.partial(func, *args, **kwargs)
305
+ functools.update_wrapper(partial_func, func)
306
+ return partial_func