import glob import inspect import os import pathlib import pickle import shutil import subprocess import sys import tempfile import traceback import uuid import zipfile from collections import defaultdict from datetime import datetime from functools import reduce from operator import concat from joblib import Parallel, delayed from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \ get_device import_matplotlib() import numpy as np import pandas as pd import requests from langchain.chains.qa_with_sources import load_qa_with_sources_chain # , GCSDirectoryLoader, GCSFileLoader # , OutlookMessageLoader # GPL3 # ImageCaptionLoader, # use our own wrapper # ReadTheDocsLoader, # no special file, some path, so have to give as special option from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \ UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \ EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \ UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.docstore.document import Document from langchain import PromptTemplate from langchain.vectorstores import Chroma def get_db(sources, use_openai_embedding=False, db_type='faiss', persist_directory="db_dir", langchain_mode='notset', hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"): if not sources: return None # get embedding model embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model) # Create vector database if db_type == 'faiss': db = FAISS.from_documents(sources, embedding) elif db_type == 'chroma': collection_name = langchain_mode.replace(' ', '_') os.makedirs(persist_directory, exist_ok=True) db = Chroma.from_documents(documents=sources, embedding=embedding, persist_directory=persist_directory, collection_name=collection_name, anonymized_telemetry=False) db.persist() # FIXME: below just proves can load persistent dir, regenerates its embedding files, so a bit wasteful if False: db = Chroma(embedding_function=embedding, persist_directory=persist_directory, collection_name=collection_name) else: raise RuntimeError("No such db_type=%s" % db_type) return db def add_to_db(db, sources, db_type='faiss', avoid_dup=True): if not sources: return db if db_type == 'faiss': db.add_documents(sources) elif db_type == 'chroma': if avoid_dup: collection = db.get() metadata_sources = set([x['source'] for x in collection['metadatas']]) sources = [x for x in sources if x.metadata['source'] not in metadata_sources] if len(sources) == 0: return db db.add_documents(documents=sources) db.persist() else: raise RuntimeError("No such db_type=%s" % db_type) return db def get_embedding(use_openai_embedding, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"): # Get embedding model if use_openai_embedding: assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY" from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() else: # to ensure can fork without deadlock from langchain.embeddings import HuggingFaceEmbeddings device, torch_dtype, context_class = get_device_dtype() model_kwargs = dict(device=device) embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs) return embedding def get_answer_from_sources(chain, sources, question): return chain( { "input_documents": sources, "question": question, }, return_only_outputs=True, )["output_text"] def get_llm(use_openai_model=False, model_name=None, model=None, tokenizer=None, stream_output=False, max_new_tokens=256, temperature=0.1, repetition_penalty=1.0, top_k=40, top_p=0.7, prompt_type=None, ): if use_openai_model: from langchain.llms import OpenAI llm = OpenAI(temperature=0) model_name = 'openai' streamer = None elif model_name in ['gptj', 'llama']: from gpt4all_llm import get_llm_gpt4all llm = get_llm_gpt4all(model_name, model=model, max_new_tokens=max_new_tokens, temperature=temperature, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p, ) streamer = None prompt_type = 'plain' else: from transformers import AutoTokenizer, AutoModelForCausalLM if model is None: # only used if didn't pass model in assert model_name is None assert tokenizer is None model_name = 'h2oai/h2ogpt-oasst1-512-12b' # model_name = 'h2oai/h2ogpt-oig-oasst1-512-6.9b' # model_name = 'h2oai/h2ogpt-oasst1-512-20b' tokenizer = AutoTokenizer.from_pretrained(model_name) device, torch_dtype, context_class = get_device_dtype() with context_class(device): load_8bit = True # FIXME: for now not to spread across hetero GPUs # device_map={"": 0} if load_8bit and device == 'cuda' else "auto" device_map = {"": 0} if device == 'cuda' else "auto" model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map, torch_dtype=torch_dtype, load_in_8bit=load_8bit) gen_kwargs = dict(max_new_tokens=max_new_tokens, return_full_text=True, early_stopping=False) if stream_output: skip_prompt = False from generate import H2OTextIteratorStreamer decoder_kwargs = {} streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs) gen_kwargs.update(dict(streamer=streamer)) else: streamer = None if 'h2ogpt' in model_name or prompt_type == 'human_bot': from h2oai_pipeline import H2OTextGenerationPipeline pipe = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, **gen_kwargs) # pipe.task = "text-generation" # below makes it listen only to our prompt removal, not built in prompt removal that is less general and not specific for our model pipe.task = "text2text-generation" prompt_type = 'human_bot' else: # only for non-instruct tuned cases when ok with just normal next token prediction from transformers import pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, **gen_kwargs) from langchain.llms import HuggingFacePipeline llm = HuggingFacePipeline(pipeline=pipe) return llm, model_name, streamer, prompt_type def get_device_dtype(): # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently import torch n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0 device = 'cpu' if n_gpus == 0 else 'cuda' # from utils import NullContext # context_class = NullContext if n_gpus > 1 or n_gpus == 0 else context_class context_class = torch.device torch_dtype = torch.float16 if device == 'cuda' else torch.float32 return device, torch_dtype, context_class def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True): """ Get wikipedia data from online :param title: :param first_paragraph_only: :param text_limit: :param take_head: :return: """ filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head) url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}" if first_paragraph_only: url += "&exintro=1" import json if not os.path.isfile(filename): data = requests.get(url).json() json.dump(data, open(filename, 'wt')) else: data = json.load(open(filename, "rt")) page_content = list(data["query"]["pages"].values())[0]["extract"] if take_head is not None and text_limit is not None: page_content = page_content[:text_limit] if take_head else page_content[:-text_limit] title_url = str(title).replace(' ', '_') return Document( page_content=page_content, metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"}, ) def get_wiki_sources(first_para=True, text_limit=None): """ Get specific named sources from wikipedia :param first_para: :param text_limit: :return: """ default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux'] wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources)) return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources] def get_github_docs(repo_owner, repo_name): """ Access github from specific repo :param repo_owner: :param repo_name: :return: """ with tempfile.TemporaryDirectory() as d: subprocess.check_call( f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .", cwd=d, shell=True, ) git_sha = ( subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d) .decode("utf-8") .strip() ) repo_path = pathlib.Path(d) markdown_files = list(repo_path.glob("*/*.md")) + list( repo_path.glob("*/*.mdx") ) for markdown_file in markdown_files: with open(markdown_file, "r") as f: relative_path = markdown_file.relative_to(repo_path) github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}" yield Document(page_content=f.read(), metadata={"source": github_url}) def get_dai_pickle(dest="."): from huggingface_hub import hf_hub_download # True for case when locally already logged in with correct token, so don't have to set key token = os.getenv('HUGGINGFACE_API_TOKEN', True) path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset') shutil.copy(path_to_zip_file, dest) def get_dai_docs(from_hf=False, get_pickle=True): """ Consume DAI documentation, or consume from public pickle :param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain :param get_pickle: Avoid raw DAI docs, just get pickle directly from HF :return: """ import pickle if get_pickle: get_dai_pickle() dai_store = 'dai_docs.pickle' dst = "working_dir_docs" if not os.path.isfile(dai_store): from create_data import setup_dai_docs dst = setup_dai_docs(dst=dst, from_hf=from_hf) import glob files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True)) basedir = os.path.abspath(os.getcwd()) from create_data import rst_to_outputs new_outputs = rst_to_outputs(files) os.chdir(basedir) pickle.dump(new_outputs, open(dai_store, 'wb')) else: new_outputs = pickle.load(open(dai_store, 'rb')) sources = [] for line, file in new_outputs: # gradio requires any linked file to be with app.py sym_src = os.path.abspath(os.path.join(dst, file)) sym_dst = os.path.abspath(os.path.join(os.getcwd(), file)) if os.path.lexists(sym_dst): os.remove(sym_dst) os.symlink(sym_src, sym_dst) itm = Document(page_content=line, metadata={"source": file}) # NOTE: yield has issues when going into db, loses metadata # yield itm sources.append(itm) return sources import distutils.spawn have_tesseract = distutils.spawn.find_executable("tesseract") have_libreoffice = distutils.spawn.find_executable("libreoffice") import pkg_resources try: assert pkg_resources.get_distribution('arxiv') is not None assert pkg_resources.get_distribution('pymupdf') is not None have_arxiv = True except (pkg_resources.DistributionNotFound, AssertionError): have_arxiv = False image_types = ["png", "jpg", "jpeg"] non_image_types = ["pdf", "txt", "csv", "toml", "py", "rst", "rtf", "md", "html", "enex", "eml", "epub", "odt", "pptx", "ppt", "zip", "urls", ] # "msg", GPL3 if have_libreoffice: non_image_types.extend(["docx", "doc"]) file_types = non_image_types + image_types def add_meta(docs1, file): file_extension = pathlib.Path(file).suffix if not isinstance(docs1, list): docs1 = [docs1] [x.metadata.update(dict(input_type=file_extension, date=str(datetime.now))) for x in docs1] def file_to_doc(file, base_path=None, verbose=False, fail_any_exception=False, chunk=True, chunk_size=512, is_url=False, is_txt=False, enable_captions=True, captions_model=None, enable_ocr=False, caption_loader=None, headsize=50): if file is None: if fail_any_exception: raise RuntimeError("Unexpected None file") else: return [] doc1 = [] # in case no support, or disabled support if base_path is None and not is_txt and not is_url: # then assume want to persist but don't care which path used # can't be in base_path dir_name = os.path.dirname(file) base_name = os.path.basename(file) # if from gradio, will have its own temp uuid too, but that's ok base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10] base_path = os.path.join(dir_name, base_name) if is_url: if file.lower().startswith('arxiv:'): query = file.lower().split('arxiv:') if len(query) == 2 and have_arxiv: query = query[1] docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load() # ensure string, sometimes None [[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1] query_url = f"https://arxiv.org/abs/{query}" [x.metadata.update( dict(source=x.metadata.get('entry_id', query_url), query=query_url, input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in docs1] else: docs1 = [] else: docs1 = UnstructuredURLLoader(urls=[file]).load() [x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1] doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif is_txt: base_path = "user_paste" source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10]) makedirs(os.path.dirname(source_file), exist_ok=True) with open(source_file, "wt") as f: f.write(file) metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt') doc1 = Document(page_content=file, metadata=metadata) elif file.endswith('.html') or file.endswith('.mhtml'): docs1 = UnstructuredHTMLLoader(file_path=file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif (file.endswith('.docx') or file.endswith('.doc')) and have_libreoffice: docs1 = UnstructuredWordDocumentLoader(file_path=file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('.odt'): docs1 = UnstructuredODTLoader(file_path=file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('pptx') or file.endswith('ppt'): docs1 = UnstructuredPowerPointLoader(file_path=file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('.txt'): # use UnstructuredFileLoader ? doc1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load() add_meta(doc1, file) elif file.endswith('.rtf'): docs1 = UnstructuredRTFLoader(file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('.md'): docs1 = UnstructuredMarkdownLoader(file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('.enex'): doc1 = EverNoteLoader(file).load() add_meta(doc1, file) elif file.endswith('.epub'): docs1 = UnstructuredEPubLoader(file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('.jpeg') or file.endswith('.jpg') or file.endswith('.png'): docs1 = [] if have_tesseract and enable_ocr: # OCR, somewhat works, but not great docs1.extend(UnstructuredImageLoader(file).load()) add_meta(docs1, file) if enable_captions: # BLIP if caption_loader is not None and not isinstance(caption_loader, (str, bool)): # assumes didn't fork into this process with joblib, else can deadlock caption_loader.set_image_paths([file]) docs1c = caption_loader.load() add_meta(docs1c, file) [x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c] docs1.extend(docs1c) else: from image_captions import H2OImageCaptionLoader caption_loader = H2OImageCaptionLoader(caption_gpu=caption_loader == 'gpu', blip_model=captions_model, blip_processor=captions_model) caption_loader.set_image_paths([file]) docs1c = caption_loader.load() add_meta(docs1c, file) [x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c] docs1.extend(docs1c) for doci in docs1: doci.metadata['source'] = doci.metadata['image_path'] if docs1: doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('.msg'): raise RuntimeError("Not supported, GPL3 license") # docs1 = OutlookMessageLoader(file).load() # docs1[0].metadata['source'] = file elif file.endswith('.eml'): try: docs1 = UnstructuredEmailLoader(file).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) except ValueError as e: if 'text/html content not found in email' in str(e): # e.g. plain/text dict key exists, but not # doc1 = TextLoader(file, encoding="utf8").load() docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) else: raise # elif file.endswith('.gcsdir'): # doc1 = GCSDirectoryLoader(project_name, bucket, prefix).load() # elif file.endswith('.gcsfile'): # doc1 = GCSFileLoader(project_name, bucket, blob).load() elif file.endswith('.rst'): with open(file, "r") as f: doc1 = Document(page_content=f.read(), metadata={"source": file}) add_meta(doc1, file) elif file.endswith('.pdf'): # Some PDFs return nothing or junk from PDFMinerLoader # e.g. Beyond fine-tuning_ Classifying high resolution mammograms using function-preserving transformations _ Elsevier Enhanced Reader.pdf doc1 = PyPDFLoader(file).load_and_split() add_meta(doc1, file) elif file.endswith('.csv'): doc1 = CSVLoader(file).load() add_meta(doc1, file) elif file.endswith('.py'): doc1 = PythonLoader(file).load() add_meta(doc1, file) elif file.endswith('.toml'): doc1 = TomlLoader(file).load() add_meta(doc1, file) elif file.endswith('.urls'): with open(file, "r") as f: docs1 = UnstructuredURLLoader(urls=f.readlines()).load() add_meta(docs1, file) doc1 = chunk_sources(docs1, chunk_size=chunk_size) elif file.endswith('.zip'): with zipfile.ZipFile(file, 'r') as zip_ref: # don't put into temporary path, since want to keep references to docs inside zip # so just extract in path where zip_ref.extractall(base_path) # recurse doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception) else: raise RuntimeError("No file handler for %s" % os.path.basename(file)) # allow doc1 to be list or not. If not list, did not chunk yet, so chunk now if not isinstance(doc1, list): if chunk: docs = chunk_sources([doc1], chunk_size=chunk_size) else: docs = [doc1] else: docs = doc1 assert isinstance(docs, list) return docs def path_to_doc1(file, verbose=False, fail_any_exception=False, return_file=True, chunk=True, chunk_size=512, is_url=False, is_txt=False, enable_captions=True, captions_model=None, enable_ocr=False, caption_loader=None): if verbose: if is_url: print("Ingesting URL: %s" % file, flush=True) elif is_txt: print("Ingesting Text: %s" % file, flush=True) else: print("Ingesting file: %s" % file, flush=True) res = None try: # don't pass base_path=path, would infinitely recurse res = file_to_doc(file, base_path=None, verbose=verbose, fail_any_exception=fail_any_exception, chunk=chunk, chunk_size=chunk_size, is_url=is_url, is_txt=is_txt, enable_captions=enable_captions, captions_model=captions_model, enable_ocr=enable_ocr, caption_loader=caption_loader) except BaseException as e: print("Failed to ingest %s due to %s" % (file, traceback.format_exc())) if fail_any_exception: raise else: exception_doc = Document( page_content='', metadata={"source": file, "exception": str(e), "traceback": traceback.format_exc()}) res = [exception_doc] if return_file: base_tmp = "temp_path_to_doc1" if not os.path.isdir(base_tmp): os.makedirs(base_tmp, exist_ok=True) filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle") with open(filename, 'wb') as f: pickle.dump(res, f) return filename return res def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1, chunk=True, chunk_size=512, url=None, text=None, enable_captions=True, captions_model=None, caption_loader=None, enable_ocr=False, ): globs_image_types = [] globs_non_image_types = [] if path_or_paths is None: return [] elif url: globs_non_image_types = [url] elif text: globs_non_image_types = [text] elif isinstance(path_or_paths, str): # single path, only consume allowed files path = path_or_paths # Below globs should match patterns in file_to_doc() [globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True)) for ftype in image_types] [globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True)) for ftype in non_image_types] else: # list/tuple of files (consume what can, and exception those that selected but cannot consume so user knows) assert isinstance(path_or_paths, (list, tuple)), "Wrong type for path_or_paths: %s" % type(path_or_paths) # reform out of allowed types globs_image_types.extend(flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in image_types])) # could do below: # globs_non_image_types = flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in non_image_types]) # But instead, allow fail so can collect unsupported too set_globs_image_types = set(globs_image_types) globs_non_image_types.extend([x for x in path_or_paths if x not in set_globs_image_types]) # could use generator, but messes up metadata handling in recursive case if caption_loader and not isinstance(caption_loader, (bool, str)) and \ caption_loader.device != 'cpu' or \ get_device() == 'cuda': # to avoid deadlocks, presume was preloaded and so can't fork due to cuda context n_jobs_image = 1 else: n_jobs_image = n_jobs return_file = True # local choice is_url = url is not None is_txt = text is not None kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception, return_file=return_file, chunk=chunk, chunk_size=chunk_size, is_url=is_url, is_txt=is_txt, enable_captions=enable_captions, captions_model=captions_model, caption_loader=caption_loader, enable_ocr=enable_ocr, ) if n_jobs != 1 and len(globs_non_image_types) > 1: # avoid nesting, e.g. upload 1 zip and then inside many files # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib documents = Parallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')( delayed(path_to_doc1)(file, **kwargs) for file in globs_non_image_types ) else: documents = [path_to_doc1(file, **kwargs) for file in globs_non_image_types] # do images separately since can't fork after cuda in parent, so can't be parallel if n_jobs_image != 1 and len(globs_image_types) > 1: # avoid nesting, e.g. upload 1 zip and then inside many files # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib image_documents = Parallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')( delayed(path_to_doc1)(file, **kwargs) for file in globs_image_types ) else: image_documents = [path_to_doc1(file, **kwargs) for file in globs_image_types] # add image docs in documents += image_documents if return_file: # then documents really are files files = documents.copy() documents = [] for fil in files: with open(fil, 'rb') as f: documents.extend(pickle.load(f)) # remove temp pickle os.remove(fil) else: documents = reduce(concat, documents) return documents def prep_langchain(persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode, user_path, hf_embedding_model, n_jobs=-1, kwargs_make_db={}): """ do prep first time, involving downloads # FIXME: Add github caching then add here :return: """ assert langchain_mode not in ['MyData'], "Should not prep scratch data" if os.path.isdir(persist_directory): print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True) db = get_existing_db(persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode, hf_embedding_model) else: print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True) db = None if langchain_mode in ['All', 'DriverlessAI docs']: # FIXME: Could also just use dai_docs.pickle directly and upload that get_dai_docs(from_hf=True) if langchain_mode in ['All', 'wiki']: get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit']) langchain_kwargs = kwargs_make_db.copy() langchain_kwargs.update(locals()) db = make_db(**langchain_kwargs) return db def get_existing_db(persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode, hf_embedding_model): if load_db_if_exists and db_type == 'chroma' and os.path.isdir(persist_directory) and os.path.isdir( os.path.join(persist_directory, 'index')): print("DO Loading db: %s" % langchain_mode, flush=True) embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model) db = Chroma(persist_directory=persist_directory, embedding_function=embedding, collection_name=langchain_mode.replace(' ', '_')) print("DONE Loading db: %s" % langchain_mode, flush=True) return db return None def make_db(**langchain_kwargs): func_names = list(inspect.signature(_make_db).parameters) missing_kwargs = [x for x in func_names if x not in langchain_kwargs] defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()} for k in missing_kwargs: if k in defaults_db: langchain_kwargs[k] = defaults_db[k] # final check for missing missing_kwargs = [x for x in func_names if x not in langchain_kwargs] assert not missing_kwargs, "Missing kwargs: %s" % missing_kwargs # only keep actual used langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names} return _make_db(**langchain_kwargs) def _make_db(use_openai_embedding=False, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", first_para=False, text_limit=None, chunk=False, chunk_size=1024, langchain_mode=None, user_path=None, db_type='faiss', load_db_if_exists=False, db=None, n_jobs=-1): persist_directory = 'db_dir_%s' % langchain_mode # single place, no special names for each case if not db and load_db_if_exists and db_type == 'chroma' and os.path.isdir(persist_directory) and os.path.isdir( os.path.join(persist_directory, 'index')): assert langchain_mode not in ['MyData'], "Should not load MyData db this way" print("Loading db", flush=True) embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model) db = Chroma(persist_directory=persist_directory, embedding_function=embedding, collection_name=langchain_mode.replace(' ', '_')) elif not db: assert langchain_mode not in ['MyData'], "Should not make MyData db this way" sources = [] print("Generating sources", flush=True) if langchain_mode in ['wiki_full', 'All', "'All'"]: from read_wiki_full import get_all_documents small_test = None print("Generating new wiki", flush=True) sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2) print("Got new wiki", flush=True) if chunk: sources1 = chunk_sources(sources1, chunk_size=chunk_size) print("Chunked new wiki", flush=True) sources.extend(sources1) if langchain_mode in ['wiki', 'All', "'All'"]: sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit) if chunk: sources1 = chunk_sources(sources1, chunk_size=chunk_size) sources.extend(sources1) if langchain_mode in ['github h2oGPT', 'All', "'All'"]: # sources = get_github_docs("dagster-io", "dagster") sources1 = get_github_docs("h2oai", "h2ogpt") # FIXME: always chunk for now sources1 = chunk_sources(sources1, chunk_size=chunk_size) sources.extend(sources1) if langchain_mode in ['DriverlessAI docs', 'All', "'All'"]: sources1 = get_dai_docs(from_hf=True) if chunk and False: # FIXME: DAI docs are already chunked well, should only chunk more if over limit sources1 = chunk_sources(sources1, chunk_size=chunk_size) sources.extend(sources1) if langchain_mode in ['All', 'UserData']: if user_path: # chunk internally for speed over multiple docs sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size) sources.extend(sources1) else: print("Chose UserData but user_path is empty/None", flush=True) if False and langchain_mode in ['urls', 'All', "'All'"]: # from langchain.document_loaders import UnstructuredURLLoader # loader = UnstructuredURLLoader(urls=urls) urls = ["https://www.birdsongsf.com/who-we-are/"] from langchain.document_loaders import PlaywrightURLLoader loader = PlaywrightURLLoader(urls=urls, remove_selectors=["header", "footer"]) sources1 = loader.load() sources.extend(sources1) if not sources: print("langchain_mode %s has no sources, not making db" % langchain_mode, flush=True) return None print("Generating db", flush=True) db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type, persist_directory=persist_directory, langchain_mode=langchain_mode, hf_embedding_model=hf_embedding_model) print("Generated db", flush=True) return db source_prefix = "Sources [Score | Link]:" source_postfix = "End Sources

" def run_qa_db(**kwargs): func_names = list(inspect.signature(_run_qa_db).parameters) # hard-coded defaults kwargs['answer_with_sources'] = True kwargs['sanitize_bot_response'] = True kwargs['show_rank'] = False missing_kwargs = [x for x in func_names if x not in kwargs] assert not missing_kwargs, "Missing kwargs: %s" % missing_kwargs # only keep actual used kwargs = {k: v for k, v in kwargs.items() if k in func_names} return _run_qa_db(**kwargs) def _run_qa_db(query=None, use_openai_model=False, use_openai_embedding=False, first_para=False, text_limit=None, k=4, chunk=False, chunk_size=1024, user_path=None, db_type='faiss', model_name=None, model=None, tokenizer=None, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", stream_output=False, prompter=None, prompt_type=None, answer_with_sources=True, cut_distanct=1.1, sanitize_bot_response=True, show_rank=False, load_db_if_exists=False, db=None, max_new_tokens=256, temperature=0.1, repetition_penalty=1.0, top_k=40, top_p=0.7, langchain_mode=None, n_jobs=-1): """ :param query: :param use_openai_model: :param use_openai_embedding: :param first_para: :param text_limit: :param k: :param chunk: :param chunk_size: :param user_path: user path to glob recursively from :param db_type: 'faiss' for in-memory db or 'chroma' for persistent db :param model_name: model name, used to switch behaviors :param model: pre-initialized model, else will make new one :param tokenizer: pre-initialized tokenizer, else will make new one. Required not None if model is not None :param answer_with_sources :return: """ # FIXME: For All just go over all dbs instead of a separate db for All db = make_db(**locals()) prompt_type = prompter.prompt_type if prompter is not None else prompt_type llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name, model=model, tokenizer=tokenizer, stream_output=stream_output, max_new_tokens=max_new_tokens, temperature=temperature, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p, prompt_type=prompt_type, ) if model_name in ['llama', 'gptj']: # FIXME: for now, streams to stdout/stderr currently stream_output = False if not use_openai_model and prompt_type not in ['plain'] or model_name in ['llama', 'gptj']: # instruct-like, rather than few-shot prompt_type='plain' as default # but then sources confuse the model with how inserted among rest of text, so avoid prefix = "" if langchain_mode in ['Disabled', 'ChatLLM', 'LLM']: use_context = False template = """%s{context}{question}""" % prefix else: use_context = True template = """%s == {context} == {question}""" % prefix prompt = PromptTemplate( # input_variables=["summaries", "question"], input_variables=["context", "question"], template=template, ) chain = load_qa_chain(llm, prompt=prompt) else: chain = load_qa_with_sources_chain(llm) use_context = True if query is None: query = "What are the main differences between Linux and Windows?" # https://github.com/hwchase17/langchain/issues/1946 # FIXME: Seems to way to get size of chroma db to limit k to avoid # Chroma collection MyData contains fewer than 4 elements. # type logger error k_db = 1000 if db_type == 'chroma' else k # k=100 works ok too for if db and use_context: docs_with_score = db.similarity_search_with_score(query, k=k_db)[:k] # cut off so no high distance docs/sources considered docs = [x[0] for x in docs_with_score if x[1] < cut_distanct] scores = [x[1] for x in docs_with_score if x[1] < cut_distanct] if len(scores) > 0: print("Distance: min: %s max: %s mean: %s median: %s" % (scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True) else: docs = [] scores = [] if not docs and use_context: return None common_words_file = "data/NGSL_1.2_stats.csv.zip" if os.path.isfile(common_words_file): df = pd.read_csv("data/NGSL_1.2_stats.csv.zip") import string reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip() reduced_query_words = reduced_query.split(' ') set_common = set(df['Lemma'].values.tolist()) num_common = len([x.lower() in set_common for x in reduced_query_words]) frac_common = num_common / len(reduced_query) # FIXME: report to user bad query that uses too many common words print("frac_common: %s" % frac_common, flush=True) if langchain_mode in ['Disabled', 'ChatLLM', 'LLM']: chain_kwargs = dict(input_documents=[], question=query) else: chain_kwargs = dict(input_documents=docs, question=query) if stream_output: answer = None assert streamer is not None target = wrapped_partial(chain, chain_kwargs) import queue bucket = queue.Queue() thread = EThread(target=target, streamer=streamer, bucket=bucket) thread.start() outputs = "" prompt = None # FIXME try: for new_text in streamer: # print("new_text: %s" % new_text, flush=True) if bucket.qsize() > 0 or thread.exc: thread.join() outputs += new_text if prompter: # and False: # FIXME: pipeline can already use prompter output1 = prompter.get_response(outputs, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield output1 else: yield outputs except BaseException: # if any exception, raise that exception if was from thread, first if thread.exc: raise thread.exc raise finally: # in case no exception and didn't join with thread yet, then join if not thread.exc: answer = thread.join() # in case raise StopIteration or broke queue loop in streamer, but still have exception if thread.exc: raise thread.exc # FIXME: answer is not string outputs from streamer. How to get actual final output? # answer = outputs else: answer = chain(chain_kwargs) if not use_context: ret = answer['output_text'] yield ret elif answer is not None: print("query: %s" % query, flush=True) print("answer: %s" % answer['output_text'], flush=True) # link answer_sources = [(max(0.0, 1.5 - score) / 1.5, get_url(doc)) for score, doc in zip(scores, answer['input_documents'])] answer_sources_dict = defaultdict(list) [answer_sources_dict[url].append(score) for score, url in answer_sources] answers_dict = {} for url, scores_url in answer_sources_dict.items(): answers_dict[url] = np.max(scores_url) answer_sources = [(score, url) for url, score in answers_dict.items()] answer_sources.sort(key=lambda x: x[0], reverse=True) if show_rank: # answer_sources = ['%d | %s' % (1 + rank, url) for rank, (score, url) in enumerate(answer_sources)] # sorted_sources_urls = "Sources [Rank | Link]:
" + "
".join(answer_sources) answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)] sorted_sources_urls = "Ranked Sources:
" + "
".join(answer_sources) else: answer_sources = ['

  • %.2g | %s
  • ' % (score, url) for score, url in answer_sources] sorted_sources_urls = f"{source_prefix}

    {source_postfix}" if not answer['output_text'].endswith('\n'): answer['output_text'] += '\n' if answer_with_sources: ret = answer['output_text'] + '\n' + sorted_sources_urls else: ret = answer['output_text'] yield ret return def chunk_sources(sources, chunk_size=1024): source_chunks = [] # Below for known separator # splitter = CharacterTextSplitter(separator=" ", chunk_size=chunk_size, chunk_overlap=0) splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0) for source in sources: # print(source.metadata['source'], flush=True) for chunky in splitter.split_text(source.page_content): source_chunks.append(Document(page_content=chunky, metadata=source.metadata)) return source_chunks def get_db_from_hf(dest=".", db_dir='db_dir_DriverlessAI_docs.zip'): from huggingface_hub import hf_hub_download # True for case when locally already logged in with correct token, so don't have to set key token = os.getenv('HUGGINGFACE_API_TOKEN', True) path_to_zip_file = hf_hub_download('h2oai/db_dirs', db_dir, token=token, repo_type='dataset') import zipfile with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref: zip_ref.extractall(dest) return path_to_zip_file # Note dir has space in some cases, while zip does not some_db_zips = [['db_dir_DriverlessAI_docs.zip', 'db_dir_DriverlessAI docs', 'CC-BY-NC license'], ['db_dir_UserData.zip', 'db_dir_UserData', 'CC-BY license for ArXiv'], ['db_dir_github_h2oGPT.zip', 'db_dir_github h2oGPT', 'ApacheV2 license'], ['db_dir_wiki.zip', 'db_dir_wiki', 'CC-BY-SA Wikipedia license'], # ['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'], ] all_db_zips = some_db_zips + \ [['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'], ] def get_some_dbs_from_hf(dest='.', db_zips=None): if db_zips is None: db_zips = some_db_zips for db_dir, dir_expected, license1 in db_zips: path_to_zip_file = get_db_from_hf(dest=dest, db_dir=db_dir) assert os.path.isfile(path_to_zip_file), "Missing zip in %s" % path_to_zip_file if dir_expected: assert os.path.isdir(os.path.join(dest, dir_expected)), "Missing path for %s" % dir_expected assert os.path.isdir(os.path.join(dest, dir_expected, 'index')), "Missing index in %s" % dir_expected if __name__ == '__main__': pass