Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,134 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
-
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces # 必须在最顶部导入
|
2 |
import gradio as gr
|
3 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# 获取 Hugging Face 访问令牌
|
6 |
+
hf_token = os.getenv("HF_API_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# 定义基础模型名称
|
9 |
+
base_model_name = "larry1129/WooWoof_AI_Vision_merged_16bit"
|
10 |
|
11 |
+
# 定义 adapter 模型名称
|
12 |
+
adapter_model_name = "larry1129/WooWoof_AI_Vision_merged_16bit"
|
13 |
|
14 |
+
# 定义全局变量用于缓存模型和分词器
|
15 |
+
model = None
|
16 |
+
tokenizer = None
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# 定义提示生成函数
|
19 |
+
def generate_prompt(instruction, input_text=""):
|
20 |
+
if input_text:
|
21 |
+
prompt = f"""### Instruction:
|
22 |
+
{instruction}
|
23 |
+
### Input:
|
24 |
+
{input_text}
|
25 |
+
### Response:
|
26 |
+
"""
|
27 |
+
else:
|
28 |
+
prompt = f"""### Instruction:
|
29 |
+
{instruction}
|
30 |
+
### Response:
|
31 |
+
"""
|
32 |
+
return prompt
|
33 |
+
|
34 |
+
# 定义生成响应的函数,并使用 @spaces.GPU 装饰
|
35 |
+
@spaces.GPU(duration=40) # 建议将 duration 增加到 120
|
36 |
+
def generate_response(instruction, input_text):
|
37 |
+
global model, tokenizer
|
38 |
+
|
39 |
+
if model is None:
|
40 |
+
print("开始加载模型...")
|
41 |
+
# 检查 bitsandbytes 是否已安装
|
42 |
+
import importlib.util
|
43 |
+
if importlib.util.find_spec("bitsandbytes") is None:
|
44 |
+
import subprocess
|
45 |
+
subprocess.call(["pip", "install", "--upgrade", "bitsandbytes"])
|
46 |
+
|
47 |
+
try:
|
48 |
+
# 在函数内部导入需要 GPU 的库
|
49 |
+
import torch
|
50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
51 |
+
|
52 |
+
from peft import PeftModel
|
53 |
+
|
54 |
+
# 创建量化配置
|
55 |
+
bnb_config = BitsAndBytesConfig(
|
56 |
+
load_in_4bit=True,
|
57 |
+
bnb_4bit_use_double_quant=True,
|
58 |
+
bnb_4bit_quant_type="nf4",
|
59 |
+
bnb_4bit_compute_dtype=torch.float16
|
60 |
)
|
61 |
|
62 |
+
# 加载分词器
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=hf_token)
|
64 |
+
print("分词器加载成功。")
|
65 |
+
|
66 |
+
# 加载基础模型
|
67 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
68 |
+
base_model_name,
|
69 |
+
quantization_config=bnb_config,
|
70 |
+
device_map="auto",
|
71 |
+
use_auth_token=hf_token,
|
72 |
+
trust_remote_code=True
|
73 |
+
)
|
74 |
+
print("基础模型加载成功。")
|
75 |
+
|
76 |
+
# 加载适配器模型
|
77 |
+
model = PeftModel.from_pretrained(
|
78 |
+
base_model,
|
79 |
+
adapter_model_name,
|
80 |
+
torch_dtype=torch.float16,
|
81 |
+
use_auth_token=hf_token
|
82 |
+
)
|
83 |
+
print("适配器模型加载成功。")
|
84 |
+
|
85 |
+
# 设置 pad_token
|
86 |
+
tokenizer.pad_token = tokenizer.eos_token
|
87 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
88 |
+
|
89 |
+
# 切换到评估模式
|
90 |
+
model.eval()
|
91 |
+
print("模型已切换到评估模式。")
|
92 |
+
except Exception as e:
|
93 |
+
print("加载模型时出错:", e)
|
94 |
+
raise e
|
95 |
+
else:
|
96 |
+
# 在函数内部导入需要的库
|
97 |
+
import torch
|
98 |
+
|
99 |
+
# 检查 model 和 tokenizer 是否已正确加载
|
100 |
+
if model is None or tokenizer is None:
|
101 |
+
print("模型或分词器未正确加载。")
|
102 |
+
raise ValueError("模型或分词器未正确加载。")
|
103 |
+
|
104 |
+
# 生成提示
|
105 |
+
prompt = generate_prompt(instruction, input_text)
|
106 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
outputs = model.generate(
|
110 |
+
input_ids=inputs["input_ids"],
|
111 |
+
attention_mask=inputs.get("attention_mask"),
|
112 |
+
max_new_tokens=128,
|
113 |
+
temperature=0.7,
|
114 |
+
top_p=0.95,
|
115 |
+
do_sample=True,
|
116 |
+
)
|
117 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
118 |
+
response = response.split("### Response:")[-1].strip()
|
119 |
+
return response
|
120 |
+
|
121 |
+
# 创建 Gradio 接口
|
122 |
+
iface = gr.Interface(
|
123 |
+
fn=generate_response,
|
124 |
+
inputs=[
|
125 |
+
gr.Textbox(lines=2, placeholder="Instruction", label="Instruction"),
|
126 |
+
],
|
127 |
+
outputs="text",
|
128 |
+
title="WooWoof AI",
|
129 |
+
description="Based on LLAMA 3.1 for pet related",
|
130 |
+
allow_flagging="never"
|
131 |
+
)
|
132 |
+
|
133 |
+
# 启动 Gradio 接口
|
134 |
+
iface.launch(share=True)
|