File size: 9,451 Bytes
2a566c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import time
from typing import *
import re
import json
import numba


def sample_vocab(tokens: Iterable[str], vocab_size: Optional[int] = None,
                 vocab_coverage: Optional[float] = None) -> List[str]:
    assert (vocab_size is not None and vocab_coverage is None) or \
           (vocab_size is None and vocab_coverage is not None), "vocab_size [or] vocab_coverage need specified"

    token_count = {}
    for c in tokens:
        token_count[c] = token_count.get(c, 0) + 1

    if vocab_size is not None:
        token_count = list(token_count.items())
        token_count.sort(key=lambda i: i[1], reverse=True)
        vocab = [c[0] for c in token_count[:vocab_size]]
    else:
        total_count = sum(token_count.values())
        token_freq = [(c, i / total_count) for c, i in token_count.items()]
        token_freq.sort(key=lambda i: i[1], reverse=True)
        freq_sum = 0.0
        split = 0
        for split in range(len(token_freq)):
            freq_sum += token_freq[split][1]
            if freq_sum >= vocab_coverage:
                break
        vocab = [c[0] for c in token_freq[:split + 1]]
    return vocab


class CharTokenizer:
    def __init__(self, corpus: str, vocab_size: Optional[int] = None, vocab_coverage: Optional[float] = None,
                 reserved_vocab: Optional[List[str]] = None, unk_literal: str = '<unk>'):
        if reserved_vocab is not None:
            assert len(reserved_vocab) == len(set(reserved_vocab)), 'no duplicate is allowed in reserved vocab'
            assert unk_literal not in reserved_vocab, f'unk literal "{unk_literal}" cannot be in reserved vocab'
        else:
            reserved_vocab = []
        vocab = reserved_vocab.copy() if reserved_vocab is not None else []
        vocab += sample_vocab(corpus, vocab_size - len(vocab) - 1, vocab_coverage)
        self.s2i = {s: i + 1 for i, s in enumerate(vocab)}
        self.s2i[unk_literal] = 0
        self.i2s = {i: s for s, i in self.s2i.items()}
        self.special_vocab = set(reserved_vocab + [unk_literal])
        self.unk_literal = unk_literal

    def encode(self, text: str) -> List[int]:
        cursor, ids = 0, []
        while cursor < len(text):
            for s in self.special_vocab:
                if text[cursor:].startswith(s):
                    ids.append(self.s2i[s])
                    cursor += len(s)
                    break
            else:
                ids.append(self.s2i.get(text[cursor], self.s2i.get(self.unk_literal)))
                cursor += 1
        return ids

    def decode(self, ids: List[int]) -> str:
        return ''.join(self.i2s[i] for i in ids)

    def get_vocab_mapping(self):
        return self.s2i


class WordTokenizer:
    def __init__(self, corpus: str, vocab_size: Optional[int] = None, vocab_coverage: Optional[float] = None,
                 reserved_vocab: Optional[List[str]] = None, unk_literal: str = '<unk>'):
        if reserved_vocab is not None:
            assert len(reserved_vocab) == len(set(reserved_vocab)), 'no duplicate is allowed in reserved vocab'
            assert unk_literal not in reserved_vocab, f'unk literal "{unk_literal}" cannot be in reserved vocab'
        else:
            reserved_vocab = []
        vocab = reserved_vocab.copy() if reserved_vocab is not None else []

        tokens = (c[0] if c[0] != '' else c[1] for c in re.finditer(r'(\w+)|(\W)', corpus))
        vocab += sample_vocab(tokens, vocab_size - len(vocab) - 1, vocab_coverage)

        self.s2i = {s: i + 1 for i, s in enumerate(vocab)}
        self.s2i[unk_literal] = 0
        self.i2s = {i: s for s, i in self.s2i.items()}
        self.special_vocab = set(reserved_vocab + [unk_literal])
        self.unk_literal = unk_literal

    def encode(self, text: str) -> List[int]:
        specials = '|'.join(f'{i}' for i in self.special_vocab)
        tokens = (c[0] if c[0] != '' else c[1] for c in re.finditer(rf'({specials}|\w+)|(\W)', text))
        return [self.s2i.get(t, self.s2i[self.unk_literal]) for t in tokens]

    def decode(self, ids: List[int]) -> str:
        return ''.join(self.i2s[i] for i in ids)

    def get_vocab_mapping(self):
        return self.s2i

    def get_vocab_size(self):
        return len(self.s2i)

    def eval_vocab_coverage(self, corpus: str):
        encoded = self.encode(corpus)
        return 1 - (len([i for i in encoded if i == 0]) / len(encoded))


class TRIETokenizer:
    @staticmethod
    def split_bytes(data: bytes):
        return [b'%c' % i for i in data]

    def __init__(self, vocab_file: str):
        self.nodes = [(b'', -1, -1, [-1 for _ in range(256)])]  # node value, parent index, token id, children
        with open(vocab_file, 'r') as file:
            vocabs = json.load(file)
        vocabs.sort(key=lambda i: len(i['bytes']))
        for entry in vocabs:
            self.add_vocab(bytes(entry['bytes']), entry['id'])

        self.id_to_bytes = {i['id']: i['bytes'] for i in vocabs}

    def add_vocab(self, vocab_bytes: bytes, vocab_id: int):
        cur_node_idx = 0
        for i, b in enumerate(vocab_bytes):
            cur_node = self.nodes[cur_node_idx]
            if cur_node[3][b] != -1:
                cur_node_idx = cur_node[3][b]
            else:
                new_node_idx = len(self.nodes)
                self.nodes.append((vocab_bytes, cur_node_idx, vocab_id if i == len(vocab_bytes) - 1 else -1,
                                   [-1 for _ in range(256)]))
                cur_node[3][b] = new_node_idx
                cur_node_idx = new_node_idx

    def attempt_match(self, match_bytes: bytes):
        match_length, match_token_id = -1, -1
        cur_node_idx, depth = 0, 0
        for i, b in enumerate(match_bytes):
            match_node_idx = self.nodes[cur_node_idx][3][b]
            if match_node_idx == -1:
                break
            cur_node = self.nodes[match_node_idx]
            if cur_node[2] != -1:
                match_length = depth
                match_token_id = cur_node[2]
            cur_node_idx = match_node_idx
            depth += 1
        return match_length, match_token_id

    def encode(self, text: str):
        text_bytes = text.encode('utf-8')
        tokens, length = [], 0
        while length < len(text_bytes):
            offset, token_id = self.attempt_match(text_bytes[length:])
            assert offset >= 0
            tokens.append(token_id)
            length += offset + 1
        return tokens

    def decode(self, token_ids: List[int]):
        return bytes([t for i in token_ids for t in self.id_to_bytes[i]]).decode('utf-8', errors='replace')

    def get_vocab_size(self):
        return len(self.id_to_bytes)


@numba.njit
def trie_attempt_match_jit(trie_nodes, match_bytes: bytes):
    match_length, match_token_id = -1, -1
    cur_node_idx, depth = 0, 0
    for i, b in enumerate(match_bytes):
        match_node_idx = trie_nodes[cur_node_idx][3][int(b)]
        if match_node_idx == -1:
            break
        cur_node = trie_nodes[match_node_idx]
        if cur_node[2] != -1:
            match_length = depth
            match_token_id = cur_node[2]
        cur_node_idx = match_node_idx
        depth += 1
    return match_length, match_token_id


@numba.njit
def trie_encode_jit(trie_nodes, text_bytes: bytes):
    tokens, length = [], 0
    while length < len(text_bytes):
        offset, token_id = trie_attempt_match_jit(trie_nodes, text_bytes[length:])
        assert offset >= 0
        tokens.append(token_id)
        length += offset + 1
    return tokens


class TRIETokenizerFast:
    def __init__(self, vocab_file: str):
        self.nodes = [(b'', -1, -1, [-1 for _ in range(256)])]  # node value, parent index, token id, children
        with open(vocab_file, 'r') as file:
            vocabs = json.load(file)
        vocabs.sort(key=lambda i: len(i['bytes']))
        for entry in vocabs:
            self.add_vocab(bytes(entry['bytes']), entry['id'])

        self.id_to_bytes = {i['id']: i['bytes'] for i in vocabs}

        self.nodesJit = numba.typed.List(self.nodes)

    def add_vocab(self, vocab_bytes: bytes, vocab_id: int):
        cur_node_idx = 0
        for i, b in enumerate(vocab_bytes):
            cur_node = self.nodes[cur_node_idx]
            if cur_node[3][b] != -1:
                cur_node_idx = cur_node[3][b]
            else:
                new_node_idx = len(self.nodes)
                self.nodes.append((vocab_bytes, cur_node_idx, vocab_id if i == len(vocab_bytes) - 1 else -1,
                                   [-1 for _ in range(256)]))
                cur_node[3][b] = new_node_idx
                cur_node_idx = new_node_idx

    def encode(self, text: str):
        return trie_encode_jit(self.nodesJit, text.encode('utf-8'))

    def decode(self, token_ids: List[int]):
        return bytes([t for i in token_ids for t in self.id_to_bytes[i]]).decode('utf-8', errors='replace')

    def get_vocab_size(self):
        return len(self.id_to_bytes)

# if __name__ == '__main__':
#     tokenizer = TRIETokenizerFast('llama_vocab_pruned_20k.json')
#     with open('corpus/TinyStoriesV2-GPT4-valid.txt', 'r') as file:
#         text = file.read()[:10240]
#
#     total_tokens = 0
#     s = time.time()
#     for i in range(1000):
#         encoded = tokenizer.encode(text)
#         total_tokens += len(encoded)
#         print(len(encoded))
#     e = time.time()
#     print(f'{e - s:.3f} secs, {total_tokens / (e - s):.3f} tps')