ToyTransformer / modeling.py
larryvrh's picture
Update for fix.
73b1ea5
raw
history blame contribute delete
No virus
12 kB
import torch
from torch import nn
from dataclasses import dataclass
from enum import Enum
from typing import *
from math import ceil
class AttentionBackend(Enum):
Naive = 0
FlashAttentionCuda = 1
FlashAttentionTriton = 2
global_config = {
'attn_backend': AttentionBackend.Naive
}
@dataclass
class TransformerConfig:
vocab_size: int = -1,
num_layers: int = -1,
num_heads: int = -1,
hidden_size: int = -1,
max_seq_len: int = -1,
root_model: 'ToyTransformer' = None
device: torch.device = torch.device('cpu')
dtype: torch.dtype = torch.float32
def expand_attn_mask(custom_attn_mask: torch.Tensor):
B, T = custom_attn_mask.shape
mask = custom_attn_mask.unsqueeze(1).repeat((1, T, 1))
seq_index_mask = (mask == custom_attn_mask[:, torch.arange(T)].view(B, T, 1))
return seq_index_mask & (torch.tril(mask) > 0)
# expand attn mask to cu_seqlens for flash attn
def expand_attn_mask_to_seq_lengths(attn_mask: torch.Tensor):
attn_mask = attn_mask.to('cpu')
seq_len = attn_mask.shape[0] * attn_mask.shape[1]
disjoint_point = torch.cat([torch.tensor([[True]] * attn_mask.shape[0]), attn_mask[:, 1:] != attn_mask[:, :-1]], dim=1)
return torch.cat([torch.nonzero(disjoint_point.view((-1,))), torch.tensor([[seq_len]])]).to(dtype=torch.int32)
# naive RoPE implementation following https://arxiv.org/pdf/2104.09864.pdf
def get_rope_cache_slow(seq_len: int, dim: int, theta: int, device: torch.device, dtype: torch.dtype):
assert dim % 2 == 0
freqs = theta ** (-2 * torch.arange(0, dim // 2, 1.) / dim)
freqs = torch.repeat_interleave(freqs, 2)
v1 = torch.cos(torch.arange(seq_len, dtype=torch.float).view((seq_len, 1)) * freqs)
v2 = torch.sin(torch.arange(seq_len, dtype=torch.float).view((seq_len, 1)) * freqs)
v2 = v2 * torch.tensor([1, -1] * (dim // 2))
indices = torch.tensor([j for i in range(0, dim, 2) for j in (i + 1, i)])
return v1.to(device, dtype=dtype), v2.to(device, dtype=dtype), indices.to(device)
def apply_rope_slow(x, rope_cache, positions: Optional[torch.Tensor] = None):
v1, v2, indices = rope_cache
seq_len, dim = x.shape[1:]
if positions is None:
v1 = v1[:seq_len, :]
v2 = v2[:seq_len, :]
else:
v1 = v1[positions, torch.arange(dim)].view((-1, dim))
v2 = v2[positions, torch.arange(dim)].view((-1, dim))
applied_x = x * v1 + (x * v2)[:, :, indices]
return applied_x
# Optimized RoPE implementation adapted from https://github.com/facebookresearch/llama/blob/main/llama/model.py
def get_rope_cache_fast(seq_len: int, dim: int, theta: int, device: torch.device, dtype: torch.dtype):
freqs = (1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs).float()
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis.to(device)
def apply_rope_fast(x, rope_cache, positions: Optional[torch.Tensor] = None) -> torch.Tensor:
x_ = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
if positions is None and x.shape[1] < rope_cache.shape[0]:
freqs_cis = rope_cache[:x.shape[1], :]
elif positions is not None:
freqs_cis = rope_cache[positions, :]
else:
freqs_cis = rope_cache
freqs_cis = freqs_cis.view([d if i == 1 or i == x_.ndim - 1 else 1 for i, d in enumerate(x_.shape)])
applied_x = torch.view_as_real(x_ * freqs_cis).flatten(2)
return applied_x.type_as(x)
# RMSNorm implementation following https://arxiv.org/pdf/1910.07467.pdf
class RMSNorm(nn.Module):
def __init__(self, hidden_size, dtype, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size, dtype=dtype))
self.eps = eps
def forward(self, x: torch.Tensor):
x_ = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return self.weight * x_
class AttentionHead(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.config = config
self.head_size = config.hidden_size // config.num_heads
self.dtype = config.dtype
self.q_proj = nn.Linear(config.hidden_size, self.head_size, dtype=config.dtype)
self.k_proj = nn.Linear(config.hidden_size, self.head_size, dtype=config.dtype)
self.v_proj = nn.Linear(config.hidden_size, self.head_size, dtype=config.dtype)
def forward(self, x: torch.Tensor, attn_masked_bias: Optional[torch.Tensor],
kv_cache: Optional[List[torch.Tensor]]) -> Tuple[torch.Tensor, List[torch.Tensor]]:
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
# if global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton:
# padding the position indices for alignment
# positions = torch.tensor([kv_cache[0].shape[1]] * q.shape[1]).to(q.device) if kv_cache is not None else torch.arange(0, x.shape[1], 1).to(q.device)
positions = torch.tensor([kv_cache[0].shape[1]]).to(q.device) if kv_cache is not None else None
q = apply_rope_fast(q, self.config.root_model.rope_cache, positions)
k = apply_rope_fast(k, self.config.root_model.rope_cache, positions)
if kv_cache is not None:
k = torch.concat([kv_cache[0], k], dim=1)
v = torch.concat([kv_cache[1], v], dim=1)
if global_config['attn_backend'] == AttentionBackend.FlashAttentionCuda:
q, k, v, = q.unsqueeze(2), k.unsqueeze(2), v.unsqueeze(2)
attn_result = flash_attn_func(q, k, v, causal=True)
q, k, v, attn_result = q.squeeze(2), k.squeeze(2), v.squeeze(2), attn_result.squeeze(2)
elif global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton:
q, k, v, = q.unsqueeze(2), k.unsqueeze(2), v.unsqueeze(2)
attn_result = flash_attn_func_triton(q, k, v, attn_masked_bias.unsqueeze(1) if attn_masked_bias is not None else None,
True if kv_cache is None else False)
q, k, v, attn_result = q.squeeze(2), k.squeeze(2), v.squeeze(2), attn_result.squeeze(2)
else:
attn_score = (q @ k.permute(0, 2, 1) / (self.head_size ** 0.5)) + attn_masked_bias
attn_result = torch.softmax(attn_score, dim=2) @ v
return attn_result, [k, v]
class MultiHeadAttention(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.config = config
self.attn_heads = nn.ModuleList([AttentionHead(config) for _ in range(config.num_heads)])
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, dtype=config.dtype)
def forward(self, x: torch.Tensor, attn_masked_bias: Optional[torch.Tensor],
kv_cache: Optional[List[torch.Tensor]]) -> Tuple[torch.Tensor, List[List[torch.Tensor]]]:
head_outputs = [head(x, attn_masked_bias, kv_cache[idx] if kv_cache is not None else None) for idx, head in
enumerate(self.attn_heads)]
return self.o_proj(torch.concat([o[0] for o in head_outputs], dim=2)), [o[1] for o in head_outputs]
class DecoderLayer(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.config = config
self.mha = MultiHeadAttention(config)
self.up_proj = nn.Linear(config.hidden_size, config.hidden_size * 4, dtype=config.dtype)
self.down_proj = nn.Linear(config.hidden_size * 4, config.hidden_size, dtype=config.dtype)
self.ln_mha = nn.LayerNorm(config.hidden_size, dtype=config.dtype)
self.ln_ffn = nn.LayerNorm(config.hidden_size, dtype=config.dtype)
self.act = nn.GELU()
def forward(self, x: torch.Tensor, attn_masked_bias: Optional[torch.Tensor],
kv_cache: Optional[List[torch.Tensor]]) -> Tuple[torch.Tensor, List[List[torch.Tensor]]]:
mha_output, new_kv_cache = self.mha(self.ln_mha(x), attn_masked_bias, kv_cache)
mha_output = x + mha_output
ffn_output = self.down_proj(self.act(self.up_proj(self.ln_ffn(mha_output))))
return mha_output + ffn_output, new_kv_cache
class ToyTransformer(nn.Module):
def __init__(self, vocab_size: int, num_layers: int, num_heads: int, hidden_size: int, max_seq_len: int,
device: torch.device = torch.device('cpu'), dtype: torch.dtype = torch.float32):
super().__init__()
self.config = TransformerConfig(vocab_size, num_layers, num_heads, hidden_size, max_seq_len, self, device,
dtype)
self.sem_embed = nn.Embedding(vocab_size, hidden_size, dtype=dtype)
self.rope_cache = get_rope_cache_fast(max_seq_len, hidden_size // num_heads, 10000, device, dtype)
self.decoder_layers = nn.ModuleList([DecoderLayer(self.config) for _ in range(num_layers)])
self.lm_head = nn.Linear(hidden_size, vocab_size, dtype=dtype)
self.to(device)
def forward(self, seq: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
kv_cache: Optional[List[torch.Tensor]] = None) -> Tuple[torch.Tensor, List[List[List[torch.Tensor]]]]:
# sanity checks
assert attn_mask is None or kv_cache is None # No support for attn_mask and kv_cache both enabled
if kv_cache is not None:
assert seq.shape[0] == 1, 'kv_cache is not supported for batch inference'
# handle flash-attn triton alignment requirement (actually only needed for backward)
seq_length = seq.shape[1]
if kv_cache is None and global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton and seq_length % 128 != 0:
if attn_mask is None: # forcibly enable attn_mask due to padding
attn_mask = torch.ones(seq.shape, device=self.device)
pad_length = (ceil(seq_length / 128) * 128) - seq_length
seq = nn.functional.pad(seq, (0, pad_length))
attn_mask = nn.functional.pad(attn_mask, (0, pad_length))
# handle attn_bias
if global_config['attn_backend'] == AttentionBackend.FlashAttentionCuda:
assert attn_mask is None, 'FlashAttn-Cuda does not support custom attn_mask'
attn_masked_bias = None
elif global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton and attn_mask is None:
attn_masked_bias = None
elif attn_mask is not None:
attn_masked_bias = expand_attn_mask(attn_mask)
elif attn_mask is None and kv_cache is None:
attn_masked_bias = expand_attn_mask(torch.ones(seq.shape, device=self.device))
elif kv_cache is not None:
attn_masked_bias = torch.ones((1, seq.shape[1], seq.shape[1]), dtype=torch.bool, device=self.device)
else:
attn_masked_bias = None
if attn_masked_bias is not None:
mask_zero = torch.tensor(0, dtype=self.config.dtype)
mask_val = torch.tensor(torch.finfo(self.config.dtype).min / 2, dtype=self.config.dtype)
attn_masked_bias = torch.where(attn_masked_bias, mask_zero, mask_val).to(self.device)
hidden = self.sem_embed(seq)
new_kv_cache = []
for idx, decoder in enumerate(self.decoder_layers):
hidden, layer_kv_cache = decoder(hidden, attn_masked_bias, kv_cache[idx] if kv_cache is not None else None)
new_kv_cache.append(layer_kv_cache)
logits = self.lm_head(hidden)
# remove padding for flash-attn triton
if kv_cache is None and global_config['attn_backend'] == AttentionBackend.FlashAttentionTriton and seq_length % 128 != 0:
logits = logits[:, :seq_length, :]
new_kv_cache = [[[cache[:, :seq_length, :] for cache in head] for head in layer] for layer in new_kv_cache]
return logits, new_kv_cache
@property
def device(self):
return next(self.parameters()).device