File size: 8,093 Bytes
ff9325e cb92d2b ff9325e cb92d2b ff9325e cb92d2b 2951b6b cb92d2b ff9325e 46bd9ac cb92d2b ff9325e fd757d2 ff9325e d6fedfa 46bd9ac ff9325e cb92d2b ff9325e 2951b6b ff9325e 2951b6b ff9325e 2951b6b ff9325e d1f4c77 ff9325e cb92d2b ff9325e cb92d2b ff9325e cb92d2b ff9325e 2951b6b ff9325e cf3ff1a cb92d2b ff9325e cb92d2b ff9325e cb92d2b ff9325e cb92d2b ff9325e cb92d2b ff9325e 2951b6b ff9325e 2951b6b ff9325e cb92d2b ff9325e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
AutoencoderTiny,
ControlNetModel,
)
from compel import Compel
import torch
from pipelines.utils.canny_gpu import SobelOperator
try:
import intel_extension_for_pytorch as ipex # type: ignore
except:
pass
import psutil
from config import Args
from pydantic import BaseModel, Field
from PIL import Image
import math
base_model = "SimianLuo/LCM_Dreamshaper_v7"
taesd_model = "madebyollin/taesd"
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
page_content = """
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
<h3 class="text-xl font-bold">LCM + Controlnet Canny</h3>
<p class="text-sm">
This demo showcases
<a
href="https://huggingface.co/blog/lcm_lora"
target="_blank"
class="text-blue-500 underline hover:no-underline">LCM LoRA</a
>
ControlNet + Image to Image pipeline using
<a
href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
target="_blank"
class="text-blue-500 underline hover:no-underline">Diffusers</a
> with a MJPEG stream server.
</p>
<p class="text-sm text-gray-500">
Change the prompt to generate different images, accepts <a
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
target="_blank"
class="text-blue-500 underline hover:no-underline">Compel</a
> syntax.
</p>
"""
class Pipeline:
class Info(BaseModel):
name: str = "controlnet"
title: str = "LCM + Controlnet"
description: str = "Generates an image from a text prompt"
input_mode: str = "image"
page_content: str = page_content
class InputParams(BaseModel):
prompt: str = Field(
default_prompt,
title="Prompt",
field="textarea",
id="prompt",
)
seed: int = Field(
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
)
steps: int = Field(
4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
)
width: int = Field(
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
)
height: int = Field(
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
)
guidance_scale: float = Field(
0.2,
min=0,
max=5,
step=0.001,
title="Guidance Scale",
field="range",
hide=True,
id="guidance_scale",
)
strength: float = Field(
0.5,
min=0.25,
max=1.0,
step=0.001,
title="Strength",
field="range",
hide=True,
id="strength",
)
controlnet_scale: float = Field(
0.8,
min=0,
max=1.0,
step=0.001,
title="Controlnet Scale",
field="range",
hide=True,
id="controlnet_scale",
)
controlnet_start: float = Field(
0.0,
min=0,
max=1.0,
step=0.001,
title="Controlnet Start",
field="range",
hide=True,
id="controlnet_start",
)
controlnet_end: float = Field(
1.0,
min=0,
max=1.0,
step=0.001,
title="Controlnet End",
field="range",
hide=True,
id="controlnet_end",
)
canny_low_threshold: float = Field(
0.31,
min=0,
max=1.0,
step=0.001,
title="Canny Low Threshold",
field="range",
hide=True,
id="canny_low_threshold",
)
canny_high_threshold: float = Field(
0.125,
min=0,
max=1.0,
step=0.001,
title="Canny High Threshold",
field="range",
hide=True,
id="canny_high_threshold",
)
debug_canny: bool = Field(
False,
title="Debug Canny",
field="checkbox",
hide=True,
id="debug_canny",
)
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_model, torch_dtype=torch_dtype
).to(device)
if args.safety_checker:
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
base_model, controlnet=controlnet_canny
)
else:
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
base_model,
safety_checker=None,
controlnet=controlnet_canny,
)
if args.use_taesd:
self.pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
).to(device)
self.canny_torch = SobelOperator(device=device)
self.pipe.set_progress_bar_config(disable=True)
self.pipe.to(device=device, dtype=torch_dtype)
if device.type != "mps":
self.pipe.unet.to(memory_format=torch.channels_last)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
self.pipe.enable_attention_slicing()
if args.torch_compile:
self.pipe.unet = torch.compile(
self.pipe.unet, mode="reduce-overhead", fullgraph=True
)
self.pipe.vae = torch.compile(
self.pipe.vae, mode="reduce-overhead", fullgraph=True
)
self.pipe(
prompt="warmup",
image=[Image.new("RGB", (768, 768))],
control_image=[Image.new("RGB", (768, 768))],
)
self.compel_proc = Compel(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder,
truncate_long_prompts=False,
)
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
generator = torch.manual_seed(params.seed)
prompt_embeds = self.compel_proc(params.prompt)
control_image = self.canny_torch(
params.image, params.canny_low_threshold, params.canny_high_threshold
)
steps = params.steps
strength = params.strength
if int(steps * strength) < 1:
steps = math.ceil(1 / max(0.10, strength))
results = self.pipe(
image=params.image,
control_image=control_image,
prompt_embeds=prompt_embeds,
generator=generator,
strength=strength,
num_inference_steps=steps,
guidance_scale=params.guidance_scale,
width=params.width,
height=params.height,
output_type="pil",
controlnet_conditioning_scale=params.controlnet_scale,
control_guidance_start=params.controlnet_start,
control_guidance_end=params.controlnet_end,
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
return None
result_image = results.images[0]
if params.debug_canny:
# paste control_image on top of result_image
w0, h0 = (200, 200)
control_image = control_image.resize((w0, h0))
w1, h1 = result_image.size
result_image.paste(control_image, (w1 - w0, h1 - h0))
return result_image
|