txt2imgLoraSDXL
Browse files
frontend/src/lib/components/ImagePlayer.svelte
CHANGED
@@ -32,5 +32,7 @@
|
|
32 |
<slot />
|
33 |
</div>
|
34 |
</div>
|
35 |
-
<Button on:click={takeSnapshot} disabled={!isLCMRunning} classList={'ml-auto'}
|
|
|
|
|
36 |
</div>
|
|
|
32 |
<slot />
|
33 |
</div>
|
34 |
</div>
|
35 |
+
<Button on:click={takeSnapshot} disabled={!isLCMRunning} classList={'text-sm my-1 ml-auto'}
|
36 |
+
>Snap</Button
|
37 |
+
>
|
38 |
</div>
|
frontend/src/lib/components/PipelineOptions.svelte
CHANGED
@@ -15,31 +15,10 @@
|
|
15 |
$: featuredOptions = pipelineParams?.filter((e) => e?.hide !== true);
|
16 |
</script>
|
17 |
|
18 |
-
<div class="
|
19 |
-
|
20 |
-
{#
|
21 |
-
{#
|
22 |
-
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
23 |
-
{:else if params.field === FieldType.SEED}
|
24 |
-
<SeedInput {params} bind:value={$pipelineValues[params.id]}></SeedInput>
|
25 |
-
{:else if params.field === FieldType.TEXTAREA}
|
26 |
-
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
27 |
-
{:else if params.field === FieldType.CHECKBOX}
|
28 |
-
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
29 |
-
{:else if params.field === FieldType.SELECT}
|
30 |
-
<Selectlist {params} bind:value={$pipelineValues[params.id]}></Selectlist>
|
31 |
-
{/if}
|
32 |
-
{/each}
|
33 |
-
{/if}
|
34 |
-
</div>
|
35 |
-
|
36 |
-
<details>
|
37 |
-
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
38 |
-
<div
|
39 |
-
class="grid grid-cols-1 items-center gap-3 {pipelineParams.length > 5 ? 'sm:grid-cols-2' : ''}"
|
40 |
-
>
|
41 |
-
{#if advanceOptions}
|
42 |
-
{#each advanceOptions as params}
|
43 |
{#if params.field === FieldType.RANGE}
|
44 |
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
45 |
{:else if params.field === FieldType.SEED}
|
@@ -54,4 +33,29 @@
|
|
54 |
{/each}
|
55 |
{/if}
|
56 |
</div>
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
$: featuredOptions = pipelineParams?.filter((e) => e?.hide !== true);
|
16 |
</script>
|
17 |
|
18 |
+
<div class="flex flex-col gap-3">
|
19 |
+
<div class="grid grid-cols-1 items-center gap-3">
|
20 |
+
{#if featuredOptions}
|
21 |
+
{#each featuredOptions as params}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
{#if params.field === FieldType.RANGE}
|
23 |
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
24 |
{:else if params.field === FieldType.SEED}
|
|
|
33 |
{/each}
|
34 |
{/if}
|
35 |
</div>
|
36 |
+
|
37 |
+
<details>
|
38 |
+
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
39 |
+
<div
|
40 |
+
class="grid grid-cols-1 items-center gap-3 {pipelineParams.length > 5
|
41 |
+
? 'sm:grid-cols-2'
|
42 |
+
: ''}"
|
43 |
+
>
|
44 |
+
{#if advanceOptions}
|
45 |
+
{#each advanceOptions as params}
|
46 |
+
{#if params.field === FieldType.RANGE}
|
47 |
+
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
48 |
+
{:else if params.field === FieldType.SEED}
|
49 |
+
<SeedInput {params} bind:value={$pipelineValues[params.id]}></SeedInput>
|
50 |
+
{:else if params.field === FieldType.TEXTAREA}
|
51 |
+
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
52 |
+
{:else if params.field === FieldType.CHECKBOX}
|
53 |
+
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
54 |
+
{:else if params.field === FieldType.SELECT}
|
55 |
+
<Selectlist {params} bind:value={$pipelineValues[params.id]}></Selectlist>
|
56 |
+
{/if}
|
57 |
+
{/each}
|
58 |
+
{/if}
|
59 |
+
</div>
|
60 |
+
</details>
|
61 |
+
</div>
|
frontend/src/lib/components/TextArea.svelte
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
-
<div class="
|
12 |
<label class="text-sm font-medium" for={params?.title}>
|
13 |
{params?.title}
|
14 |
</label>
|
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
+
<div class="">
|
12 |
<label class="text-sm font-medium" for={params?.title}>
|
13 |
{params?.title}
|
14 |
</label>
|
frontend/src/routes/+page.svelte
CHANGED
@@ -111,15 +111,13 @@
|
|
111 |
<article class="my-3 grid grid-cols-1 gap-3 lg:grid-cols-2">
|
112 |
<div>
|
113 |
<PipelineOptions {pipelineParams}></PipelineOptions>
|
114 |
-
<
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
</Button>
|
122 |
-
</div>
|
123 |
</div>
|
124 |
<div>
|
125 |
<ImagePlayer>
|
|
|
111 |
<article class="my-3 grid grid-cols-1 gap-3 lg:grid-cols-2">
|
112 |
<div>
|
113 |
<PipelineOptions {pipelineParams}></PipelineOptions>
|
114 |
+
<Button on:click={toggleLcmLive} {disabled} classList={'text-lg my-1'}>
|
115 |
+
{#if isLCMRunning}
|
116 |
+
Stop
|
117 |
+
{:else}
|
118 |
+
Start
|
119 |
+
{/if}
|
120 |
+
</Button>
|
|
|
|
|
121 |
</div>
|
122 |
<div>
|
123 |
<ImagePlayer>
|
pipelines/controlnetLoraSDXL.py
CHANGED
@@ -49,13 +49,6 @@ class Pipeline:
|
|
49 |
field="textarea",
|
50 |
id="prompt",
|
51 |
)
|
52 |
-
model_id: str = Field(
|
53 |
-
"plasmo/woolitize",
|
54 |
-
title="Base Model",
|
55 |
-
values=list(base_models.keys()),
|
56 |
-
field="select",
|
57 |
-
id="model_id",
|
58 |
-
)
|
59 |
negative_prompt: str = Field(
|
60 |
default_negative_prompt,
|
61 |
title="Negative Prompt",
|
@@ -70,10 +63,10 @@ class Pipeline:
|
|
70 |
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
71 |
)
|
72 |
width: int = Field(
|
73 |
-
|
74 |
)
|
75 |
height: int = Field(
|
76 |
-
|
77 |
)
|
78 |
guidance_scale: float = Field(
|
79 |
1.0,
|
@@ -212,11 +205,7 @@ class Pipeline:
|
|
212 |
|
213 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
214 |
generator = torch.manual_seed(params.seed)
|
215 |
-
print(f"Using model: {params.model_id}")
|
216 |
-
# pipe = self.pipes[params.model_id]
|
217 |
|
218 |
-
# activation_token = base_models[params.model_id]
|
219 |
-
# prompt = f"{activation_token} {params.prompt}"
|
220 |
prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
221 |
[params.prompt, params.negative_prompt]
|
222 |
)
|
|
|
49 |
field="textarea",
|
50 |
id="prompt",
|
51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
negative_prompt: str = Field(
|
53 |
default_negative_prompt,
|
54 |
title="Negative Prompt",
|
|
|
63 |
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
64 |
)
|
65 |
width: int = Field(
|
66 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
67 |
)
|
68 |
height: int = Field(
|
69 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
70 |
)
|
71 |
guidance_scale: float = Field(
|
72 |
1.0,
|
|
|
205 |
|
206 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
207 |
generator = torch.manual_seed(params.seed)
|
|
|
|
|
208 |
|
|
|
|
|
209 |
prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
210 |
[params.prompt, params.negative_prompt]
|
211 |
)
|
pipelines/txt2imgLoraSDXL.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
DiffusionPipeline,
|
3 |
+
LCMScheduler,
|
4 |
+
AutoencoderKL,
|
5 |
+
)
|
6 |
+
from compel import Compel, ReturnedEmbeddingsType
|
7 |
+
import torch
|
8 |
+
|
9 |
+
try:
|
10 |
+
import intel_extension_for_pytorch as ipex # type: ignore
|
11 |
+
except:
|
12 |
+
pass
|
13 |
+
|
14 |
+
import psutil
|
15 |
+
from config import Args
|
16 |
+
from pydantic import BaseModel, Field
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
20 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
21 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
|
22 |
+
|
23 |
+
|
24 |
+
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
|
25 |
+
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
26 |
+
|
27 |
+
|
28 |
+
class Pipeline:
|
29 |
+
class Info(BaseModel):
|
30 |
+
name: str = "LCM+Lora+SDXL"
|
31 |
+
title: str = "Text-to-Image SDXL + LCM + LoRA"
|
32 |
+
description: str = "Generates an image from a text prompt"
|
33 |
+
input_mode: str = "text"
|
34 |
+
|
35 |
+
class InputParams(BaseModel):
|
36 |
+
prompt: str = Field(
|
37 |
+
default_prompt,
|
38 |
+
title="Prompt",
|
39 |
+
field="textarea",
|
40 |
+
id="prompt",
|
41 |
+
)
|
42 |
+
negative_prompt: str = Field(
|
43 |
+
default_negative_prompt,
|
44 |
+
title="Negative Prompt",
|
45 |
+
field="textarea",
|
46 |
+
id="negative_prompt",
|
47 |
+
hide=True,
|
48 |
+
)
|
49 |
+
seed: int = Field(
|
50 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
51 |
+
)
|
52 |
+
steps: int = Field(
|
53 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
54 |
+
)
|
55 |
+
width: int = Field(
|
56 |
+
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
57 |
+
)
|
58 |
+
height: int = Field(
|
59 |
+
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
60 |
+
)
|
61 |
+
guidance_scale: float = Field(
|
62 |
+
1.0,
|
63 |
+
min=0,
|
64 |
+
max=20,
|
65 |
+
step=0.001,
|
66 |
+
title="Guidance Scale",
|
67 |
+
field="range",
|
68 |
+
hide=True,
|
69 |
+
id="guidance_scale",
|
70 |
+
)
|
71 |
+
|
72 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
73 |
+
vae = AutoencoderKL.from_pretrained(
|
74 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
75 |
+
)
|
76 |
+
if args.safety_checker:
|
77 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
78 |
+
model_id,
|
79 |
+
vae=vae,
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
83 |
+
model_id,
|
84 |
+
safety_checker=None,
|
85 |
+
vae=vae,
|
86 |
+
)
|
87 |
+
# Load LCM LoRA
|
88 |
+
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
89 |
+
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
90 |
+
self.pipe.set_progress_bar_config(disable=True)
|
91 |
+
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
92 |
+
|
93 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
94 |
+
self.pipe.enable_attention_slicing()
|
95 |
+
|
96 |
+
self.pipe.compel_proc = Compel(
|
97 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
98 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
99 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
100 |
+
requires_pooled=[False, True],
|
101 |
+
)
|
102 |
+
|
103 |
+
if args.torch_compile:
|
104 |
+
self.pipe.unet = torch.compile(
|
105 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
106 |
+
)
|
107 |
+
self.pipe.vae = torch.compile(
|
108 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
109 |
+
)
|
110 |
+
self.pipe(
|
111 |
+
prompt="warmup",
|
112 |
+
)
|
113 |
+
|
114 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
115 |
+
generator = torch.manual_seed(params.seed)
|
116 |
+
|
117 |
+
prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
118 |
+
[params.prompt, params.negative_prompt]
|
119 |
+
)
|
120 |
+
results = self.pipe(
|
121 |
+
prompt_embeds=prompt_embeds[0:1],
|
122 |
+
pooled_prompt_embeds=pooled_prompt_embeds[0:1],
|
123 |
+
negative_prompt_embeds=prompt_embeds[1:2],
|
124 |
+
negative_pooled_prompt_embeds=pooled_prompt_embeds[1:2],
|
125 |
+
generator=generator,
|
126 |
+
num_inference_steps=params.steps,
|
127 |
+
guidance_scale=params.guidance_scale,
|
128 |
+
width=params.width,
|
129 |
+
height=params.height,
|
130 |
+
output_type="pil",
|
131 |
+
)
|
132 |
+
|
133 |
+
nsfw_content_detected = (
|
134 |
+
results.nsfw_content_detected[0]
|
135 |
+
if "nsfw_content_detected" in results
|
136 |
+
else False
|
137 |
+
)
|
138 |
+
if nsfw_content_detected:
|
139 |
+
return None
|
140 |
+
result_image = results.images[0]
|
141 |
+
|
142 |
+
return result_image
|