Spaces:
Runtime error
Runtime error
controlnet support
Browse files
app.py
CHANGED
@@ -65,8 +65,8 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
|
65 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
66 |
avg_diff_x_1, avg_diff_x_2,
|
67 |
avg_diff_y_1, avg_diff_y_2,
|
68 |
-
img2img_type = None,
|
69 |
-
|
70 |
|
71 |
start_time = time.time()
|
72 |
# check if avg diff for directions need to be re-calculated
|
@@ -93,7 +93,7 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
|
93 |
|
94 |
if img2img_type=="controlnet canny" and img is not None:
|
95 |
control_img = process_controlnet_img(img)
|
96 |
-
image = clip_slider.generate(prompt, image=control_img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
97 |
elif img2img_type=="ip adapter" and img is not None:
|
98 |
image = clip_slider.generate(prompt, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
99 |
else: # text to image
|
@@ -115,12 +115,13 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
|
115 |
@spaces.GPU
|
116 |
def update_scales(x,y,prompt,seed, steps,
|
117 |
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
|
118 |
-
img2img_type = None, img = None
|
|
|
119 |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
|
120 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
121 |
if img2img_type=="controlnet canny" and img is not None:
|
122 |
control_img = process_controlnet_img(img)
|
123 |
-
image = clip_slider.generate(prompt, image=control_img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
124 |
elif img2img_type=="ip adapter" and img is not None:
|
125 |
image = clip_slider.generate(prompt, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
126 |
else:
|
@@ -191,13 +192,20 @@ with gr.Blocks(css=css) as demo:
|
|
191 |
prompt = gr.Textbox(label="Prompt")
|
192 |
submit = gr.Button("Submit")
|
193 |
with gr.Group(elem_id="group"):
|
194 |
-
x = gr.Slider(minimum=-
|
195 |
-
y = gr.Slider(minimum=-
|
196 |
output_image = gr.Image(elem_id="image_out")
|
197 |
|
198 |
with gr.Accordion(label="advanced options", open=False):
|
199 |
-
iterations = gr.Slider(label = "num iterations", minimum=0, value=
|
200 |
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
202 |
|
203 |
|
@@ -218,18 +226,39 @@ with gr.Blocks(css=css) as demo:
|
|
218 |
with gr.Accordion(label="advanced options", open=False):
|
219 |
iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
|
220 |
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
222 |
|
223 |
submit.click(fn=generate,
|
224 |
-
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
225 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
226 |
-
x.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
227 |
-
y.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
228 |
submit_a.click(fn=generate,
|
229 |
-
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
230 |
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
|
231 |
-
x_a.change(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
|
232 |
-
y_a.change(fn=update_scales, inputs=[x_a,y_a, prompt, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
|
233 |
|
234 |
|
235 |
if __name__ == "__main__":
|
|
|
65 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
66 |
avg_diff_x_1, avg_diff_x_2,
|
67 |
avg_diff_y_1, avg_diff_y_2,
|
68 |
+
img2img_type = None, img = None,
|
69 |
+
controlnet_scale= None, ip_adapter_scale=None):
|
70 |
|
71 |
start_time = time.time()
|
72 |
# check if avg diff for directions need to be re-calculated
|
|
|
93 |
|
94 |
if img2img_type=="controlnet canny" and img is not None:
|
95 |
control_img = process_controlnet_img(img)
|
96 |
+
image = clip_slider.generate(prompt, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
97 |
elif img2img_type=="ip adapter" and img is not None:
|
98 |
image = clip_slider.generate(prompt, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
|
99 |
else: # text to image
|
|
|
115 |
@spaces.GPU
|
116 |
def update_scales(x,y,prompt,seed, steps,
|
117 |
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
|
118 |
+
img2img_type = None, img = None,
|
119 |
+
controlnet_scale= None, ip_adapter_scale=None):
|
120 |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
|
121 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
122 |
if img2img_type=="controlnet canny" and img is not None:
|
123 |
control_img = process_controlnet_img(img)
|
124 |
+
image = clip_slider.generate(prompt, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
125 |
elif img2img_type=="ip adapter" and img is not None:
|
126 |
image = clip_slider.generate(prompt, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
127 |
else:
|
|
|
192 |
prompt = gr.Textbox(label="Prompt")
|
193 |
submit = gr.Button("Submit")
|
194 |
with gr.Group(elem_id="group"):
|
195 |
+
x = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="x", interactive=False)
|
196 |
+
y = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="y", interactive=False)
|
197 |
output_image = gr.Image(elem_id="image_out")
|
198 |
|
199 |
with gr.Accordion(label="advanced options", open=False):
|
200 |
+
iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400)
|
201 |
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
202 |
+
guidance_scale = gr.Slider(
|
203 |
+
label="Guidance scale",
|
204 |
+
minimum=0.1,
|
205 |
+
maximum=10.0,
|
206 |
+
step=0.1,
|
207 |
+
value=5,
|
208 |
+
)
|
209 |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
210 |
|
211 |
|
|
|
226 |
with gr.Accordion(label="advanced options", open=False):
|
227 |
iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
|
228 |
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
229 |
+
guidance_scale_a = gr.Slider(
|
230 |
+
label="Guidance scale",
|
231 |
+
minimum=0.1,
|
232 |
+
maximum=10.0,
|
233 |
+
step=0.1,
|
234 |
+
value=5,
|
235 |
+
)
|
236 |
+
controlnet_conditioning_scale = gr.Slider(
|
237 |
+
label="controlnet conditioning scale",
|
238 |
+
minimum=0.5,
|
239 |
+
maximum=5.0,
|
240 |
+
step=0.1,
|
241 |
+
value=0.7,
|
242 |
+
)
|
243 |
+
ip_adapter_scale = gr.Slider(
|
244 |
+
label="ip adapter scale",
|
245 |
+
minimum=0.5,
|
246 |
+
maximum=5.0,
|
247 |
+
step=0.1,
|
248 |
+
value=0.8,
|
249 |
+
)
|
250 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
251 |
|
252 |
submit.click(fn=generate,
|
253 |
+
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
254 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
255 |
+
x.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
256 |
+
y.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
257 |
submit_a.click(fn=generate,
|
258 |
+
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
|
259 |
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
|
260 |
+
x_a.change(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
|
261 |
+
y_a.change(fn=update_scales, inputs=[x_a,y_a, prompt, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
|
262 |
|
263 |
|
264 |
if __name__ == "__main__":
|