diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,1920 +1,12 @@ import gradio as gr import spaces +from clip_slider_pipeline import T5SliderFlux +from diffusers import FluxPipeline import torch -from clip_slider_pipeline import CLIPSliderXL, CLIPSliderXL_inv -from diffusers import StableDiffusionXLPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, EulerDiscreteScheduler, AutoencoderKL import time import numpy as np import cv2 from PIL import Image -#from ledits.pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL - - - -# Copyright 2023 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import inspect -import math -from typing import Any, Callable, Dict, List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -from transformers import ( - CLIPImageProcessor, - CLIPTextModel, - CLIPTextModelWithProjection, - CLIPTokenizer, - CLIPVisionModelWithProjection, -) - -from diffusers.image_processor import PipelineImageInput, VaeImageProcessor -from diffusers.loaders import ( - FromSingleFileMixin, - IPAdapterMixin, - StableDiffusionXLLoraLoaderMixin, - TextualInversionLoaderMixin, -) -from diffusers.models import AutoencoderKL, UNet2DConditionModel -from diffusers.models.attention_processor import ( - Attention, - AttnProcessor, - AttnProcessor2_0, - XFormersAttnProcessor, -) -from diffusers.models.lora import adjust_lora_scale_text_encoder -from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler -from diffusers.utils import ( - USE_PEFT_BACKEND, - is_invisible_watermark_available, - is_torch_xla_available, - logging, - replace_example_docstring, - scale_lora_layers, - unscale_lora_layers, -) -from diffusers.utils.torch_utils import randn_tensor -from diffusers.pipelines.pipeline_utils import DiffusionPipeline -from ledits.pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput - - -if is_invisible_watermark_available(): - from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker - -if is_torch_xla_available(): - import torch_xla.core.xla_model as xm - - XLA_AVAILABLE = True -else: - XLA_AVAILABLE = False - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - -EXAMPLE_DOC_STRING = """ - Examples: - ```py - >>> import torch - >>> import PIL - >>> import requests - >>> from io import BytesIO - - >>> from diffusers import LEditsPPPipelineStableDiffusionXL - - >>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained( - ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ... ) - >>> pipe = pipe.to("cuda") - - - >>> def download_image(url): - ... response = requests.get(url) - ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") - - - >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg" - >>> image = download_image(img_url) - - >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2) - - >>> edited_image = pipe( - ... editing_prompt=["tennis ball", "tomato"], - ... reverse_editing_direction=[True, False], - ... edit_guidance_scale=[5.0, 10.0], - ... edit_threshold=[0.9, 0.85], - ... ).images[0] - ``` -""" - - -# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore -class LeditsAttentionStore: - @staticmethod - def get_empty_store(): - return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} - - def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): - # attn.shape = batch_size * head_size, seq_len query, seq_len_key - if attn.shape[1] <= self.max_size: - bs = 1 + int(PnP) + editing_prompts - skip = 2 if PnP else 1 # skip PnP & unconditional - attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) - source_batch_size = int(attn.shape[1] // bs) - self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet) - - def forward(self, attn, is_cross: bool, place_in_unet: str): - key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" - - self.step_store[key].append(attn) - - def between_steps(self, store_step=True): - if store_step: - if self.average: - if len(self.attention_store) == 0: - self.attention_store = self.step_store - else: - for key in self.attention_store: - for i in range(len(self.attention_store[key])): - self.attention_store[key][i] += self.step_store[key][i] - else: - if len(self.attention_store) == 0: - self.attention_store = [self.step_store] - else: - self.attention_store.append(self.step_store) - - self.cur_step += 1 - self.step_store = self.get_empty_store() - - def get_attention(self, step: int): - if self.average: - attention = { - key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store - } - else: - assert step is not None - attention = self.attention_store[step] - return attention - - def aggregate_attention( - self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int - ): - out = [[] for x in range(self.batch_size)] - if isinstance(res, int): - num_pixels = res**2 - resolution = (res, res) - else: - num_pixels = res[0] * res[1] - resolution = res[:2] - - for location in from_where: - for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: - for batch, item in enumerate(bs_item): - if item.shape[1] == num_pixels: - cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] - out[batch].append(cross_maps) - - out = torch.stack([torch.cat(x, dim=0) for x in out]) - # average over heads - out = out.sum(1) / out.shape[1] - return out - - def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None): - self.step_store = self.get_empty_store() - self.attention_store = [] - self.cur_step = 0 - self.average = average - self.batch_size = batch_size - if max_size is None: - self.max_size = max_resolution**2 - elif max_size is not None and max_resolution is None: - self.max_size = max_size - else: - raise ValueError("Only allowed to set one of max_resolution or max_size") - - -# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing -class LeditsGaussianSmoothing: - def __init__(self, device): - kernel_size = [3, 3] - sigma = [0.5, 0.5] - - # The gaussian kernel is the product of the gaussian function of each dimension. - kernel = 1 - meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) - for size, std, mgrid in zip(kernel_size, sigma, meshgrids): - mean = (size - 1) / 2 - kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) - - # Make sure sum of values in gaussian kernel equals 1. - kernel = kernel / torch.sum(kernel) - - # Reshape to depthwise convolutional weight - kernel = kernel.view(1, 1, *kernel.size()) - kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) - - self.weight = kernel.to(device) - - def __call__(self, input): - """ - Arguments: - Apply gaussian filter to input. - input (torch.Tensor): Input to apply gaussian filter on. - Returns: - filtered (torch.Tensor): Filtered output. - """ - return F.conv2d(input, weight=self.weight.to(input.dtype)) - - -# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor -class LEDITSCrossAttnProcessor: - def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): - self.attnstore = attention_store - self.place_in_unet = place_in_unet - self.editing_prompts = editing_prompts - self.pnp = pnp - - def __call__( - self, - attn: Attention, - hidden_states, - encoder_hidden_states, - attention_mask=None, - temb=None, - ): - batch_size, sequence_length, _ = ( - hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape - ) - attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) - - query = attn.to_q(hidden_states) - - if encoder_hidden_states is None: - encoder_hidden_states = hidden_states - elif attn.norm_cross: - encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) - - key = attn.to_k(encoder_hidden_states) - value = attn.to_v(encoder_hidden_states) - - query = attn.head_to_batch_dim(query) - key = attn.head_to_batch_dim(key) - value = attn.head_to_batch_dim(value) - - attention_probs = attn.get_attention_scores(query, key, attention_mask) - self.attnstore( - attention_probs, - is_cross=True, - place_in_unet=self.place_in_unet, - editing_prompts=self.editing_prompts, - PnP=self.pnp, - ) - - hidden_states = torch.bmm(attention_probs, value) - hidden_states = attn.batch_to_head_dim(hidden_states) - - # linear proj - hidden_states = attn.to_out[0](hidden_states) - # dropout - hidden_states = attn.to_out[1](hidden_states) - - hidden_states = hidden_states / attn.rescale_output_factor - return hidden_states - - -class LEditsPPPipelineStableDiffusionXL( - DiffusionPipeline, - FromSingleFileMixin, - StableDiffusionXLLoraLoaderMixin, - TextualInversionLoaderMixin, - IPAdapterMixin, -): - """ - Pipeline for textual image editing using LEDits++ with Stable Diffusion XL. - - This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the - superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a - particular device, etc.). - - In addition the pipeline inherits the following loading methods: - - *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`] - - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] - - as well as the following saving methods: - - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] - - Args: - vae ([`AutoencoderKL`]): - Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. - text_encoder ([`~transformers.CLIPTextModel`]): - Frozen text-encoder. Stable Diffusion XL uses the text portion of - [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically - the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. - text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): - Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of - [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), - specifically the - [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) - variant. - tokenizer ([`~transformers.CLIPTokenizer`]): - Tokenizer of class - [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). - tokenizer_2 ([`~transformers.CLIPTokenizer`]): - Second Tokenizer of class - [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). - unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. - scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]): - A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of - [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will - automatically be set to [`DPMSolverMultistepScheduler`]. - force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): - Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of - `stabilityai/stable-diffusion-xl-base-1-0`. - add_watermarker (`bool`, *optional*): - Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to - watermark output images. If not defined, it will default to True if the package is installed, otherwise no - watermarker will be used. - """ - - model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" - _optional_components = [ - "tokenizer", - "tokenizer_2", - "text_encoder", - "text_encoder_2", - "image_encoder", - "feature_extractor", - ] - _callback_tensor_inputs = [ - "latents", - "prompt_embeds", - "negative_prompt_embeds", - "add_text_embeds", - "add_time_ids", - "negative_pooled_prompt_embeds", - "negative_add_time_ids", - ] - - def __init__( - self, - vae: AutoencoderKL, - text_encoder: CLIPTextModel, - text_encoder_2: CLIPTextModelWithProjection, - tokenizer: CLIPTokenizer, - tokenizer_2: CLIPTokenizer, - unet: UNet2DConditionModel, - scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler], - image_encoder: CLIPVisionModelWithProjection = None, - feature_extractor: CLIPImageProcessor = None, - force_zeros_for_empty_prompt: bool = True, - add_watermarker: Optional[bool] = None, - ): - super().__init__() - - self.register_modules( - vae=vae, - text_encoder=text_encoder, - text_encoder_2=text_encoder_2, - tokenizer=tokenizer, - tokenizer_2=tokenizer_2, - unet=unet, - scheduler=scheduler, - image_encoder=image_encoder, - feature_extractor=feature_extractor, - ) - self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) - self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) - self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) - - if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler): - self.scheduler = DPMSolverMultistepScheduler.from_config( - scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2 - ) - logger.warning( - "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. " - "The scheduler has been changed to DPMSolverMultistepScheduler." - ) - - self.default_sample_size = self.unet.config.sample_size - - add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() - - if add_watermarker: - self.watermark = StableDiffusionXLWatermarker() - else: - self.watermark = None - self.inversion_steps = None - - def encode_prompt( - self, - device: Optional[torch.device] = None, - num_images_per_prompt: int = 1, - negative_prompt: Optional[str] = None, - negative_prompt_2: Optional[str] = None, - negative_prompt_embeds: Optional[torch.Tensor] = None, - negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, - lora_scale: Optional[float] = None, - clip_skip: Optional[int] = None, - enable_edit_guidance: bool = True, - editing_prompt: Optional[str] = None, - editing_prompt_embeds: Optional[torch.Tensor] = None, - editing_pooled_prompt_embeds: Optional[torch.Tensor] = None, - avg_diff=None, # [0] -> text encoder 1,[1] ->text encoder 2 - avg_diff_2nd=None, # text encoder 1,2 - correlation_weight_factor=0.7, - scale=2, - scale_2nd=2, - ) -> object: - r""" - Encodes the prompt into text encoder hidden states. - - Args: - device: (`torch.device`): - torch device - num_images_per_prompt (`int`): - number of images that should be generated per prompt - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. If not defined, one has to pass - `negative_prompt_embeds` instead. - negative_prompt_2 (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and - `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders - negative_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input - argument. - negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` - input argument. - lora_scale (`float`, *optional*): - A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. - clip_skip (`int`, *optional*): - Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that - the output of the pre-final layer will be used for computing the prompt embeddings. - enable_edit_guidance (`bool`): - Whether to guide towards an editing prompt or not. - editing_prompt (`str` or `List[str]`, *optional*): - Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass - `editing_prompt_embeds` instead. - editing_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. - If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from - `editing_prompt` input argument. - editing_pooled_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt` - input argument. - """ - device = device or self._execution_device - - # set lora scale so that monkey patched LoRA - # function of text encoder can correctly access it - if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): - self._lora_scale = lora_scale - - # dynamically adjust the LoRA scale - if self.text_encoder is not None: - if not USE_PEFT_BACKEND: - adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) - else: - scale_lora_layers(self.text_encoder, lora_scale) - - if self.text_encoder_2 is not None: - if not USE_PEFT_BACKEND: - adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) - else: - scale_lora_layers(self.text_encoder_2, lora_scale) - - batch_size = self.batch_size - - # Define tokenizers and text encoders - tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] - text_encoders = ( - [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] - ) - num_edit_tokens = 0 - - # get unconditional embeddings for classifier free guidance - zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt - - if negative_prompt_embeds is None: - negative_prompt = negative_prompt or "" - negative_prompt_2 = negative_prompt_2 or negative_prompt - - # normalize str to list - negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt - negative_prompt_2 = ( - batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 - ) - - uncond_tokens: List[str] - - if batch_size != len(negative_prompt): - raise ValueError( - f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion " - f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" - " the batch size of the input images." - ) - else: - uncond_tokens = [negative_prompt, negative_prompt_2] - - j=0 - negative_prompt_embeds_list = [] - for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): - if isinstance(self, TextualInversionLoaderMixin): - negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) - - - uncond_input = tokenizer( - negative_prompt, - padding="max_length", - max_length=tokenizer.model_max_length, - truncation=True, - return_tensors="pt", - ) - toks = uncond_input.input_ids - - negative_prompt_embeds = text_encoder( - uncond_input.input_ids.to(device), - output_hidden_states=True, - ) - # We are only ALWAYS interested in the pooled output of the final text encoder - negative_pooled_prompt_embeds = negative_prompt_embeds[0] - negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] - - if avg_diff is not None: - # scale=3 - normed_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True) - sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T - if j == 0: - weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768) - - standard_weights = torch.ones_like(weights) - - weights = standard_weights + (weights - standard_weights) * correlation_weight_factor - edit_concepts_embeds = negative_prompt_embeds + ( - weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) - - if avg_diff_2nd is not None: - edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, - self.pipe.tokenizer.model_max_length, - 1) * scale_2nd) - else: - weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280) - - standard_weights = torch.ones_like(weights) - - weights = standard_weights + (weights - standard_weights) * correlation_weight_factor - edit_concepts_embeds = negative_prompt_embeds + ( - weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) - - if avg_diff_2nd is not None: - edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, - self.pipe.tokenizer_2.model_max_length, - 1) * scale_2nd) - - negative_prompt_embeds_list.append(negative_prompt_embeds) - j+=1 - - negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) - - if zero_out_negative_prompt: - negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds) - negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds) - - if enable_edit_guidance and editing_prompt_embeds is None: - editing_prompt_2 = editing_prompt - - editing_prompts = [editing_prompt, editing_prompt_2] - edit_prompt_embeds_list = [] - - i = 0 - for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders): - if isinstance(self, TextualInversionLoaderMixin): - editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer) - - max_length = negative_prompt_embeds.shape[1] - edit_concepts_input = tokenizer( - # [x for item in editing_prompt for x in repeat(item, batch_size)], - editing_prompt, - padding="max_length", - max_length=max_length, - truncation=True, - return_tensors="pt", - return_length=True, - ) - num_edit_tokens = edit_concepts_input.length - 2 - toks = edit_concepts_input.input_ids - edit_concepts_embeds = text_encoder( - edit_concepts_input.input_ids.to(device), - output_hidden_states=True, - ) - # We are only ALWAYS interested in the pooled output of the final text encoder - editing_pooled_prompt_embeds = edit_concepts_embeds[0] - if clip_skip is None: - edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2] - else: - # "2" because SDXL always indexes from the penultimate layer. - edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)] - - - if avg_diff is not None: - - normed_prompt_embeds = edit_concepts_embeds / edit_concepts_embeds.norm(dim=-1, keepdim=True) - sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T - if i == 0: - weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768) - - standard_weights = torch.ones_like(weights) - - weights = standard_weights + (weights - standard_weights) * correlation_weight_factor - edit_concepts_embeds = edit_concepts_embeds + ( - weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) - - if avg_diff_2nd is not None: - edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, - self.pipe.tokenizer.model_max_length, - 1) * scale_2nd) - else: - weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280) - - standard_weights = torch.ones_like(weights) - - weights = standard_weights + (weights - standard_weights) * correlation_weight_factor - edit_concepts_embeds = edit_concepts_embeds + ( - weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale) - if avg_diff_2nd is not None: - edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, - self.pipe.tokenizer_2.model_max_length, - 1) * scale_2nd) - - - edit_prompt_embeds_list.append(edit_concepts_embeds) - i+=1 - - edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1) - elif not enable_edit_guidance: - edit_concepts_embeds = None - editing_pooled_prompt_embeds = None - - negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) - bs_embed, seq_len, _ = negative_prompt_embeds.shape - # duplicate unconditional embeddings for each generation per prompt, using mps friendly method - seq_len = negative_prompt_embeds.shape[1] - negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) - negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) - negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) - - if enable_edit_guidance: - bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape - edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device) - edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1) - edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) - - negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( - bs_embed * num_images_per_prompt, -1 - ) - - if enable_edit_guidance: - editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( - bs_embed_edit * num_images_per_prompt, -1 - ) - - if self.text_encoder is not None: - if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: - # Retrieve the original scale by scaling back the LoRA layers - unscale_lora_layers(self.text_encoder, lora_scale) - - if self.text_encoder_2 is not None: - if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: - # Retrieve the original scale by scaling back the LoRA layers - unscale_lora_layers(self.text_encoder_2, lora_scale) - - return ( - negative_prompt_embeds, - edit_concepts_embeds, - negative_pooled_prompt_embeds, - editing_pooled_prompt_embeds, - num_edit_tokens, - ) - - # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs - def prepare_extra_step_kwargs(self, eta, generator=None): - # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature - # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. - # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 - # and should be between [0, 1] - - accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) - extra_step_kwargs = {} - if accepts_eta: - extra_step_kwargs["eta"] = eta - - # check if the scheduler accepts generator - accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) - if accepts_generator: - extra_step_kwargs["generator"] = generator - return extra_step_kwargs - - def check_inputs( - self, - negative_prompt=None, - negative_prompt_2=None, - negative_prompt_embeds=None, - negative_pooled_prompt_embeds=None, - ): - if negative_prompt is not None and negative_prompt_embeds is not None: - raise ValueError( - f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" - f" {negative_prompt_embeds}. Please make sure to only forward one of the two." - ) - elif negative_prompt_2 is not None and negative_prompt_embeds is not None: - raise ValueError( - f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" - f" {negative_prompt_embeds}. Please make sure to only forward one of the two." - ) - - if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: - raise ValueError( - "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." - ) - - # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents - def prepare_latents(self, device, latents): - latents = latents.to(device) - - # scale the initial noise by the standard deviation required by the scheduler - latents = latents * self.scheduler.init_noise_sigma - return latents - - def _get_add_time_ids( - self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None - ): - add_time_ids = list(original_size + crops_coords_top_left + target_size) - - passed_add_embed_dim = ( - self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim - ) - expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features - - if expected_add_embed_dim != passed_add_embed_dim: - raise ValueError( - f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." - ) - - add_time_ids = torch.tensor([add_time_ids], dtype=dtype) - return add_time_ids - - # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae - def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) - - # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding - def get_guidance_scale_embedding( - self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 - ) -> torch.Tensor: - """ - See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 - - Args: - w (`torch.Tensor`): - Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. - embedding_dim (`int`, *optional*, defaults to 512): - Dimension of the embeddings to generate. - dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): - Data type of the generated embeddings. - - Returns: - `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. - """ - assert len(w.shape) == 1 - w = w * 1000.0 - - half_dim = embedding_dim // 2 - emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) - emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) - emb = w.to(dtype)[:, None] * emb[None, :] - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) - if embedding_dim % 2 == 1: # zero pad - emb = torch.nn.functional.pad(emb, (0, 1)) - assert emb.shape == (w.shape[0], embedding_dim) - return emb - - @property - def guidance_scale(self): - return self._guidance_scale - - @property - def guidance_rescale(self): - return self._guidance_rescale - - @property - def clip_skip(self): - return self._clip_skip - - # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) - # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` - # corresponds to doing no classifier free guidance. - @property - def do_classifier_free_guidance(self): - return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None - - @property - def cross_attention_kwargs(self): - return self._cross_attention_kwargs - - @property - def denoising_end(self): - return self._denoising_end - - @property - def num_timesteps(self): - return self._num_timesteps - - # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet - def prepare_unet(self, attention_store, PnP: bool = False): - attn_procs = {} - for name in self.unet.attn_processors.keys(): - if name.startswith("mid_block"): - place_in_unet = "mid" - elif name.startswith("up_blocks"): - place_in_unet = "up" - elif name.startswith("down_blocks"): - place_in_unet = "down" - else: - continue - - if "attn2" in name and place_in_unet != "mid": - attn_procs[name] = LEDITSCrossAttnProcessor( - attention_store=attention_store, - place_in_unet=place_in_unet, - pnp=PnP, - editing_prompts=self.enabled_editing_prompts, - ) - else: - attn_procs[name] = AttnProcessor() - - self.unet.set_attn_processor(attn_procs) - - @torch.no_grad() - @spaces.GPU - @replace_example_docstring(EXAMPLE_DOC_STRING) - def __call__( - self, - denoising_end: Optional[float] = None, - negative_prompt: Optional[Union[str, List[str]]] = None, - negative_prompt_2: Optional[Union[str, List[str]]] = None, - negative_prompt_embeds: Optional[torch.Tensor] = None, - negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, - ip_adapter_image: Optional[PipelineImageInput] = None, - output_type: Optional[str] = "pil", - return_dict: bool = True, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - guidance_rescale: float = 0.0, - crops_coords_top_left: Tuple[int, int] = (0, 0), - target_size: Optional[Tuple[int, int]] = None, - editing_prompt: Optional[Union[str, List[str]]] = None, - editing_prompt_embeddings: Optional[torch.Tensor] = None, - editing_pooled_prompt_embeds: Optional[torch.Tensor] = None, - reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, - edit_guidance_scale: Optional[Union[float, List[float]]] = 5, - edit_warmup_steps: Optional[Union[int, List[int]]] = 0, - edit_cooldown_steps: Optional[Union[int, List[int]]] = None, - edit_threshold: Optional[Union[float, List[float]]] = 0.9, - sem_guidance: Optional[List[torch.Tensor]] = None, - use_cross_attn_mask: bool = False, - use_intersect_mask: bool = False, - user_mask: Optional[torch.Tensor] = None, - attn_store_steps: Optional[List[int]] = [], - store_averaged_over_steps: bool = True, - clip_skip: Optional[int] = None, - callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, - callback_on_step_end_tensor_inputs: List[str] = ["latents"], - avg_diff=None, # [0] -> text encoder 1,[1] ->text encoder 2 - avg_diff_2nd=None, # text encoder 1,2 - correlation_weight_factor=0.7, - scale=2, - scale_2nd=2, - init_latents: [torch.Tensor] = None, - zs: [torch.Tensor] = None, - **kwargs, - ): - r""" - The call function to the pipeline for editing. The - [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits - will always be performed for the last inverted image(s). - - Args: - denoising_end (`float`, *optional*): - When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be - completed before it is intentionally prematurely terminated. As a result, the returned sample will - still retain a substantial amount of noise as determined by the discrete timesteps selected by the - scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a - "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. If not defined, one has to pass - `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is - less than `1`). - negative_prompt_2 (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and - `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders - negative_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input - argument. - negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` - input argument. - ip_adapter_image: (`PipelineImageInput`, *optional*): - Optional image input to work with IP Adapters. - output_type (`str`, *optional*, defaults to `"pil"`): - The output format of the generate image. Choose between - [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead - of a plain tuple. - callback (`Callable`, *optional*): - A function that will be called every `callback_steps` steps during inference. The function will be - called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. - callback_steps (`int`, *optional*, defaults to 1): - The frequency at which the `callback` function will be called. If not specified, the callback will be - called at every step. - cross_attention_kwargs (`dict`, *optional*): - A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under - `self.processor` in - [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). - guidance_rescale (`float`, *optional*, defaults to 0.7): - Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are - Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of - [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). - Guidance rescale factor should fix overexposure when using zero terminal SNR. - crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): - `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position - `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting - `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of - [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). - target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): - For most cases, `target_size` should be set to the desired height and width of the generated image. If - not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in - section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). - editing_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts to guide the image generation. The image is reconstructed by setting - `editing_prompt = None`. Guidance direction of prompt should be specified via - `reverse_editing_direction`. - editing_prompt_embeddings (`torch.Tensor`, *optional*): - Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. - If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument. - editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*): - Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input - argument. - reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): - Whether the corresponding prompt in `editing_prompt` should be increased or decreased. - edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): - Guidance scale for guiding the image generation. If provided as list values should correspond to - `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++ - Paper](https://arxiv.org/abs/2301.12247). - edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): - Number of diffusion steps (for each prompt) for which guidance is not applied. - edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): - Number of diffusion steps (for each prompt) after which guidance is no longer applied. - edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): - Masking threshold of guidance. Threshold should be proportional to the image region that is modified. - 'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++ - Paper](https://arxiv.org/abs/2301.12247). - sem_guidance (`List[torch.Tensor]`, *optional*): - List of pre-generated guidance vectors to be applied at generation. Length of the list has to - correspond to `num_inference_steps`. - use_cross_attn_mask: - Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask - is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++ - paper](https://arxiv.org/pdf/2311.16711.pdf). - use_intersect_mask: - Whether the masking term is calculated as intersection of cross-attention masks and masks derived from - the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate - are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). - user_mask: - User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s - implicit masks do not meet user preferences. - attn_store_steps: - Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes. - store_averaged_over_steps: - Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If - False, attention maps for each step are stores separately. Just for visualization purposes. - clip_skip (`int`, *optional*): - Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that - the output of the pre-final layer will be used for computing the prompt embeddings. - callback_on_step_end (`Callable`, *optional*): - A function that calls at the end of each denoising steps during the inference. The function is called - with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, - callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by - `callback_on_step_end_tensor_inputs`. - callback_on_step_end_tensor_inputs (`List`, *optional*): - The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list - will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the - `._callback_tensor_inputs` attribute of your pipeline class. - - Examples: - - Returns: - [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`: - [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When - returning a tuple, the first element is a list with the generated images. - """ - if self.inversion_steps is None: - raise ValueError( - "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)." - ) - - eta = self.eta - num_images_per_prompt = 1 - #latents = self.init_latents - latents = init_latents - - #zs = self.zs - self.scheduler.set_timesteps(len(self.scheduler.timesteps)) - - if use_intersect_mask: - use_cross_attn_mask = True - - if use_cross_attn_mask: - self.smoothing = LeditsGaussianSmoothing(self.device) - - if user_mask is not None: - user_mask = user_mask.to(self.device) - - # TODO: Check inputs - # 1. Check inputs. Raise error if not correct - # self.check_inputs( - # callback_steps, - # negative_prompt, - # negative_prompt_2, - # prompt_embeds, - # negative_prompt_embeds, - # pooled_prompt_embeds, - # negative_pooled_prompt_embeds, - # ) - self._guidance_rescale = guidance_rescale - self._clip_skip = clip_skip - self._cross_attention_kwargs = cross_attention_kwargs - self._denoising_end = denoising_end - - # 2. Define call parameters - batch_size = self.batch_size - - device = self._execution_device - - if editing_prompt: - enable_edit_guidance = True - if isinstance(editing_prompt, str): - editing_prompt = [editing_prompt] - self.enabled_editing_prompts = len(editing_prompt) - elif editing_prompt_embeddings is not None: - enable_edit_guidance = True - self.enabled_editing_prompts = editing_prompt_embeddings.shape[0] - else: - self.enabled_editing_prompts = 0 - enable_edit_guidance = False - print("negative_prompt", negative_prompt) - # 3. Encode input prompt - text_encoder_lora_scale = ( - cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None - ) - ( - prompt_embeds, - edit_prompt_embeds, - negative_pooled_prompt_embeds, - pooled_edit_embeds, - num_edit_tokens, - ) = self.encode_prompt( - device=device, - num_images_per_prompt=num_images_per_prompt, - negative_prompt=negative_prompt, - negative_prompt_2=negative_prompt_2, - negative_prompt_embeds=negative_prompt_embeds, - negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, - lora_scale=text_encoder_lora_scale, - clip_skip=self.clip_skip, - enable_edit_guidance=enable_edit_guidance, - editing_prompt=editing_prompt, - editing_prompt_embeds=editing_prompt_embeddings, - editing_pooled_prompt_embeds=editing_pooled_prompt_embeds, - avg_diff = avg_diff, - avg_diff_2nd = avg_diff_2nd, - correlation_weight_factor = correlation_weight_factor, - scale=scale, - scale_2nd=scale_2nd - ) - - # 4. Prepare timesteps - # self.scheduler.set_timesteps(num_inference_steps, device=device) - - timesteps = self.inversion_steps - timesteps = inversion_steps - t_to_idx = {int(v): k for k, v in enumerate(timesteps)} - - if use_cross_attn_mask: - self.attention_store = LeditsAttentionStore( - average=store_averaged_over_steps, - batch_size=batch_size, - max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0), - max_resolution=None, - ) - self.prepare_unet(self.attention_store) - resolution = latents.shape[-2:] - att_res = (int(resolution[0] / 4), int(resolution[1] / 4)) - - # 5. Prepare latent variables - latents = self.prepare_latents(device=device, latents=latents) - - # 6. Prepare extra step kwargs. - extra_step_kwargs = self.prepare_extra_step_kwargs(eta) - - if self.text_encoder_2 is None: - text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) - else: - text_encoder_projection_dim = self.text_encoder_2.config.projection_dim - - # 7. Prepare added time ids & embeddings - add_text_embeds = negative_pooled_prompt_embeds - add_time_ids = self._get_add_time_ids( - self.size, - crops_coords_top_left, - self.size, - dtype=negative_pooled_prompt_embeds.dtype, - text_encoder_projection_dim=text_encoder_projection_dim, - ) - - if enable_edit_guidance: - prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0) - add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0) - edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1) - add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0) - self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt - - prompt_embeds = prompt_embeds.to(device) - add_text_embeds = add_text_embeds.to(device) - add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) - - if ip_adapter_image is not None: - # TODO: fix image encoding - image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) - if self.do_classifier_free_guidance: - image_embeds = torch.cat([negative_image_embeds, image_embeds]) - image_embeds = image_embeds.to(device) - - # 8. Denoising loop - self.sem_guidance = None - self.activation_mask = None - - if ( - self.denoising_end is not None - and isinstance(self.denoising_end, float) - and self.denoising_end > 0 - and self.denoising_end < 1 - ): - discrete_timestep_cutoff = int( - round( - self.scheduler.config.num_train_timesteps - - (self.denoising_end * self.scheduler.config.num_train_timesteps) - ) - ) - num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) - timesteps = timesteps[:num_inference_steps] - - # 9. Optionally get Guidance Scale Embedding - timestep_cond = None - if self.unet.config.time_cond_proj_dim is not None: - guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) - timestep_cond = self.get_guidance_scale_embedding( - guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim - ).to(device=device, dtype=latents.dtype) - - self._num_timesteps = len(timesteps) - with self.progress_bar(total=self._num_timesteps) as progress_bar: - for i, t in enumerate(timesteps): - # expand the latents if we are doing classifier free guidance - latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) - latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) - # predict the noise residual - added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} - if ip_adapter_image is not None: - added_cond_kwargs["image_embeds"] = image_embeds - noise_pred = self.unet( - latent_model_input, - t, - encoder_hidden_states=prompt_embeds, - cross_attention_kwargs=cross_attention_kwargs, - added_cond_kwargs=added_cond_kwargs, - return_dict=False, - )[0] - - noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64] - noise_pred_uncond = noise_pred_out[0] - noise_pred_edit_concepts = noise_pred_out[1:] - - noise_guidance_edit = torch.zeros( - noise_pred_uncond.shape, - device=self.device, - dtype=noise_pred_uncond.dtype, - ) - - if sem_guidance is not None and len(sem_guidance) > i: - noise_guidance_edit += sem_guidance[i].to(self.device) - - elif enable_edit_guidance: - if self.activation_mask is None: - self.activation_mask = torch.zeros( - (len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape) - ) - if self.sem_guidance is None: - self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) - - # noise_guidance_edit = torch.zeros_like(noise_guidance) - for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): - if isinstance(edit_warmup_steps, list): - edit_warmup_steps_c = edit_warmup_steps[c] - else: - edit_warmup_steps_c = edit_warmup_steps - if i < edit_warmup_steps_c: - continue - - if isinstance(edit_guidance_scale, list): - edit_guidance_scale_c = edit_guidance_scale[c] - else: - edit_guidance_scale_c = edit_guidance_scale - - if isinstance(edit_threshold, list): - edit_threshold_c = edit_threshold[c] - else: - edit_threshold_c = edit_threshold - if isinstance(reverse_editing_direction, list): - reverse_editing_direction_c = reverse_editing_direction[c] - else: - reverse_editing_direction_c = reverse_editing_direction - - if isinstance(edit_cooldown_steps, list): - edit_cooldown_steps_c = edit_cooldown_steps[c] - elif edit_cooldown_steps is None: - edit_cooldown_steps_c = i + 1 - else: - edit_cooldown_steps_c = edit_cooldown_steps - - if i >= edit_cooldown_steps_c: - continue - - noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond - - if reverse_editing_direction_c: - noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 - - noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c - - if user_mask is not None: - noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask - - if use_cross_attn_mask: - out = self.attention_store.aggregate_attention( - attention_maps=self.attention_store.step_store, - prompts=self.text_cross_attention_maps, - res=att_res, - from_where=["up", "down"], - is_cross=True, - select=self.text_cross_attention_maps.index(editing_prompt[c]), - ) - attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext - - # average over all tokens - if attn_map.shape[3] != num_edit_tokens[c]: - raise ValueError( - f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!" - ) - attn_map = torch.sum(attn_map, dim=3) - - # gaussian_smoothing - attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect") - attn_map = self.smoothing(attn_map).squeeze(1) - - # torch.quantile function expects float32 - if attn_map.dtype == torch.float32: - tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) - else: - tmp = torch.quantile( - attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1 - ).to(attn_map.dtype) - attn_mask = torch.where( - attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0 - ) - - # resolution must match latent space dimension - attn_mask = F.interpolate( - attn_mask.unsqueeze(1), - noise_guidance_edit_tmp.shape[-2:], # 64,64 - ).repeat(1, 4, 1, 1) - self.activation_mask[i, c] = attn_mask.detach().cpu() - if not use_intersect_mask: - noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask - - if use_intersect_mask: - noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) - noise_guidance_edit_tmp_quantile = torch.sum( - noise_guidance_edit_tmp_quantile, dim=1, keepdim=True - ) - noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat( - 1, self.unet.config.in_channels, 1, 1 - ) - - # torch.quantile function expects float32 - if noise_guidance_edit_tmp_quantile.dtype == torch.float32: - tmp = torch.quantile( - noise_guidance_edit_tmp_quantile.flatten(start_dim=2), - edit_threshold_c, - dim=2, - keepdim=False, - ) - else: - tmp = torch.quantile( - noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), - edit_threshold_c, - dim=2, - keepdim=False, - ).to(noise_guidance_edit_tmp_quantile.dtype) - - intersect_mask = ( - torch.where( - noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], - torch.ones_like(noise_guidance_edit_tmp), - torch.zeros_like(noise_guidance_edit_tmp), - ) - * attn_mask - ) - - self.activation_mask[i, c] = intersect_mask.detach().cpu() - - noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask - - elif not use_cross_attn_mask: - # calculate quantile - noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) - noise_guidance_edit_tmp_quantile = torch.sum( - noise_guidance_edit_tmp_quantile, dim=1, keepdim=True - ) - noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) - - # torch.quantile function expects float32 - if noise_guidance_edit_tmp_quantile.dtype == torch.float32: - tmp = torch.quantile( - noise_guidance_edit_tmp_quantile.flatten(start_dim=2), - edit_threshold_c, - dim=2, - keepdim=False, - ) - else: - tmp = torch.quantile( - noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), - edit_threshold_c, - dim=2, - keepdim=False, - ).to(noise_guidance_edit_tmp_quantile.dtype) - - self.activation_mask[i, c] = ( - torch.where( - noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], - torch.ones_like(noise_guidance_edit_tmp), - torch.zeros_like(noise_guidance_edit_tmp), - ) - .detach() - .cpu() - ) - - noise_guidance_edit_tmp = torch.where( - noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], - noise_guidance_edit_tmp, - torch.zeros_like(noise_guidance_edit_tmp), - ) - - noise_guidance_edit += noise_guidance_edit_tmp - - self.sem_guidance[i] = noise_guidance_edit.detach().cpu() - - noise_pred = noise_pred_uncond + noise_guidance_edit - - # compute the previous noisy sample x_t -> x_t-1 - if enable_edit_guidance and self.guidance_rescale > 0.0: - # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf - noise_pred = rescale_noise_cfg( - noise_pred, - noise_pred_edit_concepts.mean(dim=0, keepdim=False), - guidance_rescale=self.guidance_rescale, - ) - - idx = t_to_idx[int(t)] - latents = self.scheduler.step( - noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False - )[0] - - # step callback - if use_cross_attn_mask: - store_step = i in attn_store_steps - self.attention_store.between_steps(store_step) - - if callback_on_step_end is not None: - callback_kwargs = {} - for k in callback_on_step_end_tensor_inputs: - callback_kwargs[k] = locals()[k] - callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) - - latents = callback_outputs.pop("latents", latents) - prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) - negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) - add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) - negative_pooled_prompt_embeds = callback_outputs.pop( - "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds - ) - add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) - # negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids) - - # call the callback, if provided - if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0): - progress_bar.update() - - if XLA_AVAILABLE: - xm.mark_step() - - if not output_type == "latent": - # make sure the VAE is in float32 mode, as it overflows in float16 - needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast - - if needs_upcasting: - self.upcast_vae() - latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) - - image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] - - # cast back to fp16 if needed - if needs_upcasting: - self.vae.to(dtype=torch.float16) - else: - image = latents - - if not output_type == "latent": - # apply watermark if available - if self.watermark is not None: - image = self.watermark.apply_watermark(image) - - image = self.image_processor.postprocess(image, output_type=output_type) - - # Offload all models - self.maybe_free_model_hooks() - - if not return_dict: - return (image,) - - return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None) - - @torch.no_grad() - # Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image - def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None): - image = self.image_processor.preprocess( - image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords - ) - resized = self.image_processor.postprocess(image=image, output_type="pil") - - if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5: - logger.warning( - "Your input images far exceed the default resolution of the underlying diffusion model. " - "The output images may contain severe artifacts! " - "Consider down-sampling the input using the `height` and `width` parameters" - ) - image = image.to(self.device, dtype=dtype) - needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast - - if needs_upcasting: - image = image.float() - self.upcast_vae() - - x0 = self.vae.encode(image).latent_dist.mode() - x0 = x0.to(dtype) - # cast back to fp16 if needed - if needs_upcasting: - self.vae.to(dtype=torch.float16) - - x0 = self.vae.config.scaling_factor * x0 - return x0, resized - - @torch.no_grad() - @spaces.GPU - def invert( - self, - image: PipelineImageInput, - source_prompt: str = "", - source_guidance_scale=3.5, - negative_prompt: str = None, - negative_prompt_2: str = None, - num_inversion_steps: int = 50, - skip: float = 0.15, - generator: Optional[torch.Generator] = None, - crops_coords_top_left: Tuple[int, int] = (0, 0), - num_zero_noise_steps: int = 3, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - ): - r""" - The function to the pipeline for image inversion as described by the [LEDITS++ - Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the - inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead. - - Args: - image (`PipelineImageInput`): - Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect - ratio. - source_prompt (`str`, defaults to `""`): - Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled - if the `source_prompt` is `""`. - source_guidance_scale (`float`, defaults to `3.5`): - Strength of guidance during inversion. - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. If not defined, one has to pass - `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is - less than `1`). - negative_prompt_2 (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and - `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders - num_inversion_steps (`int`, defaults to `50`): - Number of total performed inversion steps after discarding the initial `skip` steps. - skip (`float`, defaults to `0.15`): - Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values - will lead to stronger changes to the input image. `skip` has to be between `0` and `1`. - generator (`torch.Generator`, *optional*): - A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion - deterministic. - crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): - `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position - `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting - `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of - [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). - num_zero_noise_steps (`int`, defaults to `3`): - Number of final diffusion steps that will not renoise the current image. If no steps are set to zero - SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts. - cross_attention_kwargs (`dict`, *optional*): - A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under - `self.processor` in - [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). - - Returns: - [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s) - and respective VAE reconstruction(s). - """ - - # Reset attn processor, we do not want to store attn maps during inversion - self.unet.set_attn_processor(AttnProcessor()) - - self.eta = 1.0 - - self.scheduler.config.timestep_spacing = "leading" - self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) - self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] - timesteps = self.inversion_steps - - num_images_per_prompt = 1 - - device = self._execution_device - - # 0. Ensure that only uncond embedding is used if prompt = "" - if source_prompt == "": - # noise pred should only be noise_pred_uncond - source_guidance_scale = 0.0 - do_classifier_free_guidance = False - else: - do_classifier_free_guidance = source_guidance_scale > 1.0 - - # 1. prepare image - x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype) - width = x0.shape[2] * self.vae_scale_factor - height = x0.shape[3] * self.vae_scale_factor - self.size = (height, width) - - self.batch_size = x0.shape[0] - - # 2. get embeddings - text_encoder_lora_scale = ( - cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None - ) - - if isinstance(source_prompt, str): - source_prompt = [source_prompt] * self.batch_size - - ( - negative_prompt_embeds, - prompt_embeds, - negative_pooled_prompt_embeds, - edit_pooled_prompt_embeds, - _, - ) = self.encode_prompt( - device=device, - num_images_per_prompt=num_images_per_prompt, - negative_prompt=negative_prompt, - negative_prompt_2=negative_prompt_2, - editing_prompt=source_prompt, - lora_scale=text_encoder_lora_scale, - enable_edit_guidance=do_classifier_free_guidance, - ) - if self.text_encoder_2 is None: - text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) - else: - text_encoder_projection_dim = self.text_encoder_2.config.projection_dim - - # 3. Prepare added time ids & embeddings - add_text_embeds = negative_pooled_prompt_embeds - add_time_ids = self._get_add_time_ids( - self.size, - crops_coords_top_left, - self.size, - dtype=negative_prompt_embeds.dtype, - text_encoder_projection_dim=text_encoder_projection_dim, - ) - - if do_classifier_free_guidance: - negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) - add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0) - add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) - - negative_prompt_embeds = negative_prompt_embeds.to(device) - - add_text_embeds = add_text_embeds.to(device) - add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1) - - # autoencoder reconstruction - if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: - self.upcast_vae() - x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) - image_rec = self.vae.decode( - x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator - )[0] - elif self.vae.config.force_upcast: - x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) - image_rec = self.vae.decode( - x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator - )[0] - else: - image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] - - image_rec = self.image_processor.postprocess(image_rec, output_type="pil") - - # 5. find zs and xts - variance_noise_shape = (num_inversion_steps, *x0.shape) - - # intermediate latents - t_to_idx = {int(v): k for k, v in enumerate(timesteps)} - xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) - - for t in reversed(timesteps): - idx = num_inversion_steps - t_to_idx[int(t)] - 1 - noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) - xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0)) - xts = torch.cat([x0.unsqueeze(0), xts], dim=0) - - # noise maps - zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) - - self.scheduler.set_timesteps(len(self.scheduler.timesteps)) - - for t in self.progress_bar(timesteps): - idx = num_inversion_steps - t_to_idx[int(t)] - 1 - # 1. predict noise residual - xt = xts[idx + 1] - - latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt - latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) - - added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} - - noise_pred = self.unet( - latent_model_input, - t, - encoder_hidden_states=negative_prompt_embeds, - cross_attention_kwargs=cross_attention_kwargs, - added_cond_kwargs=added_cond_kwargs, - return_dict=False, - )[0] - - # 2. perform guidance - if do_classifier_free_guidance: - noise_pred_out = noise_pred.chunk(2) - noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1] - noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond) - - xtm1 = xts[idx] - z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) - zs[idx] = z - - # correction to avoid error accumulation - xts[idx] = xtm1_corrected - - self.init_latents = xts[-1] - zs = zs.flip(0) - - if num_zero_noise_steps > 0: - zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:]) - self.zs = zs - #return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec) - return xts[-1], zs - - -# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg -def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): - """ - Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and - Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 - """ - std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) - std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) - # rescale the results from guidance (fixes overexposure) - noise_pred_rescaled = noise_cfg * (std_text / std_cfg) - # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images - noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg - return noise_cfg - - -# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim -def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): - # 1. get previous step value (=t-1) - prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps - - # 2. compute alphas, betas - alpha_prod_t = scheduler.alphas_cumprod[timestep] - alpha_prod_t_prev = ( - scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod - ) - - beta_prod_t = 1 - alpha_prod_t - - # 3. compute predicted original sample from predicted noise also called - # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf - pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) - - # 4. Clip "predicted x_0" - if scheduler.config.clip_sample: - pred_original_sample = torch.clamp(pred_original_sample, -1, 1) - - # 5. compute variance: "sigma_t(η)" -> see formula (16) - # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) - variance = scheduler._get_variance(timestep, prev_timestep) - std_dev_t = eta * variance ** (0.5) - - # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf - pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred - - # modifed so that updated xtm1 is returned as well (to avoid error accumulation) - mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction - if variance > 0.0: - noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta) - else: - noise = torch.tensor([0.0]).to(latents.device) - - return noise, mu_xt + (eta * variance**0.5) * noise - - -# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd -def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): - def first_order_update(model_output, sample): # timestep, prev_timestep, sample): - sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index] - alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) - alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s) - lambda_t = torch.log(alpha_t) - torch.log(sigma_t) - lambda_s = torch.log(alpha_s) - torch.log(sigma_s) - - h = lambda_t - lambda_s - - mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output - - mu_xt = scheduler.dpm_solver_first_order_update( - model_output=model_output, sample=sample, noise=torch.zeros_like(sample) - ) - - sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) - if sigma > 0.0: - noise = (prev_latents - mu_xt) / sigma - else: - noise = torch.tensor([0.0]).to(sample.device) - - prev_sample = mu_xt + sigma * noise - return noise, prev_sample - - def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample): - sigma_t, sigma_s0, sigma_s1 = ( - scheduler.sigmas[scheduler.step_index + 1], - scheduler.sigmas[scheduler.step_index], - scheduler.sigmas[scheduler.step_index - 1], - ) - - alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) - alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0) - alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1) - - lambda_t = torch.log(alpha_t) - torch.log(sigma_t) - lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) - lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) - - m0, m1 = model_output_list[-1], model_output_list[-2] - - h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 - r0 = h_0 / h - D0, D1 = m0, (1.0 / r0) * (m0 - m1) - - mu_xt = ( - (sigma_t / sigma_s0 * torch.exp(-h)) * sample - + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 - + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 - ) - - sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) - if sigma > 0.0: - noise = (prev_latents - mu_xt) / sigma - else: - noise = torch.tensor([0.0]).to(sample.device) - - prev_sample = mu_xt + sigma * noise - - return noise, prev_sample - - if scheduler.step_index is None: - scheduler._init_step_index(timestep) - - model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents) - for i in range(scheduler.config.solver_order - 1): - scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] - scheduler.model_outputs[-1] = model_output - - if scheduler.lower_order_nums < 1: - noise, prev_sample = first_order_update(model_output, latents) - else: - noise, prev_sample = second_order_update(scheduler.model_outputs, latents) - - if scheduler.lower_order_nums < scheduler.config.solver_order: - scheduler.lower_order_nums += 1 - - # upon completion increase step index by one - scheduler._step_index += 1 - - return noise, prev_sample - - -# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise -def compute_noise(scheduler, *args): - if isinstance(scheduler, DDIMScheduler): - return compute_noise_ddim(scheduler, *args) - elif ( - isinstance(scheduler, DPMSolverMultistepScheduler) - and scheduler.config.algorithm_type == "sde-dpmsolver++" - and scheduler.config.solver_order == 2 - ): - return compute_noise_sde_dpm_pp_2nd(scheduler, *args) - else: - raise NotImplementedError - - -def HWC3(x): - assert x.dtype == np.uint8 - if x.ndim == 2: - x = x[:, :, None] - assert x.ndim == 3 - H, W, C = x.shape - assert C == 1 or C == 3 or C == 4 - if C == 3: - return x - if C == 1: - return np.concatenate([x, x, x], axis=2) - if C == 4: - color = x[:, :, 0:3].astype(np.float32) - alpha = x[:, :, 3:4].astype(np.float32) / 255.0 - y = color * alpha + 255.0 * (1.0 - alpha) - y = y.clip(0, 255).astype(np.uint8) - return y def process_controlnet_img(image): controlnet_img = np.array(image) @@ -1923,36 +15,32 @@ def process_controlnet_img(image): controlnet_img = Image.fromarray(controlnet_img) # load pipelines -vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) -pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16) -pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) -clip_slider = CLIPSliderXL(pipe, device=torch.device("cuda")) - -pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16) -pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config) -#pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") -# scale = 0.8 -# pipe_adapter.set_ip_adapter_scale(scale) -clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda")) - -controlnet = ControlNetModel.from_pretrained( - "xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet - torch_dtype=torch.float16 -) -vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) -pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained( - "sd-community/sdxl-flash", - controlnet=controlnet, - vae=vae, - torch_dtype=torch.float16, -) -clip_slider_controlnet = CLIPSliderXL(sd_pipe=pipe_controlnet,device=torch.device("cuda")) - -pipe_inv = LEditsPPPipelineStableDiffusionXL.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, - torch_dtype=torch.float16 -) -clip_slider_inv = CLIPSliderXL_inv(sd_pipe=pipe_inv,device=torch.device("cuda")) +pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", + torch_dtype=torch.bfloat16) +pipe.enable_model_cpu_offload() +t5_slider = T5SliderFlux(pipe, device=torch.device("cuda")) + +# pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16) +# pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config) +# #pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") +# # scale = 0.8 +# # pipe_adapter.set_ip_adapter_scale(scale) +# clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda")) + +# controlnet = ControlNetModel.from_pretrained( +# "xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet +# torch_dtype=torch.float16 +# ) +# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) +# pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained( +# "sd-community/sdxl-flash", +# controlnet=controlnet, +# vae=vae, +# torch_dtype=torch.float16, +# ) +# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda")) + +# clip_slider_inv = CLIPSliderXL_inv(sd_pipe=pipe_inv,device=torch.device("cuda")) @spaces.GPU(duration=120) def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, @@ -1961,8 +49,8 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale avg_diff_y_1, avg_diff_y_2, img2img_type = None, img = None, controlnet_scale= None, ip_adapter_scale=None, - edit_threshold=None, edit_guidance_scale = None, - init_latents=None, zs=None): + + ): start_time = time.time() # check if avg diff for directions need to be re-calculated @@ -1970,7 +58,7 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]): - avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) + avg_diff = t5_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) avg_diff_0 = avg_diff[0].to(torch.float16) avg_diff_1 = avg_diff[1].to(torch.float16) x_concept_1, x_concept_2 = slider_x[0], slider_x[1] @@ -1978,7 +66,7 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale print("avg_diff_0", avg_diff_0.dtype) if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]): - avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations) + avg_diff_2nd = t5_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations) avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16) avg_diff_2nd_1 = avg_diff_2nd[1].to(torch.float16) y_concept_1, y_concept_2 = slider_y[0], slider_y[1] @@ -1989,13 +77,11 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale if img2img_type=="controlnet canny" and img is not None: control_img = process_controlnet_img(img) - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) + image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) elif img2img_type=="ip adapter" and img is not None: - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) - elif img2img_type=="inversion": - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1), init_latents = init_latents, zs=zs, edit_threshold=[edit_threshold], edit_guidance_scale = [edit_guidance_scale]) + image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) else: # text to image - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) + image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) end_time = time.time() print(f"generation time: {end_time - start_time:.2f} ms") @@ -2014,20 +100,16 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale def update_scales(x,y,prompt,seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type = None, img = None, - controlnet_scale= None, ip_adapter_scale=None, - edit_threshold=None, edit_guidance_scale = None, - init_latents=None, zs=None): + controlnet_scale= None, ip_adapter_scale=None,): avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) if img2img_type=="controlnet canny" and img is not None: control_img = process_controlnet_img(img) - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) + image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) elif img2img_type=="ip adapter" and img is not None: - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) - elif img2img_type=="inversion": - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1), edit_threshold=[edit_threshold], edit_guidance_scale = [edit_guidance_scale], init_latents = init_latents, zs=zs) + image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) else: - image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) + image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) return image @spaces.GPU @@ -2047,23 +129,11 @@ def update_y(x,y,prompt, seed, steps, img = None): avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) - image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) + image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) return image -@spaces.GPU -def invert_image(image, num_inversion_steps=50, skip=0.3): - image = image.resize((512,512)) - init_latents,zs = clip_slider_inv.pipe.invert( - source_prompt = "", - image = image, - num_inversion_steps = num_inversion_steps, - skip = skip -) - print("post 5") - return init_latents,zs -def reset_do_inversion(): - return True + css = ''' #group { position: relative; @@ -2099,10 +169,6 @@ with gr.Blocks(css=css) as demo: avg_diff_x_2 = gr.State() avg_diff_y_1 = gr.State() avg_diff_y_2 = gr.State() - - do_inversion = gr.State() - init_latents = gr.State() - zs = gr.State() with gr.Tab("text2image"): with gr.Row(): @@ -2174,64 +240,13 @@ with gr.Blocks(css=css) as demo: value=0.8, ) seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) - - with gr.Tab(label="inversion"): - with gr.Row(): - with gr.Column(): - image_inv = gr.Image(type="pil", image_mode = "RGB", height=512, width=512) - slider_x_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) - slider_y_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) - prompt_inv = gr.Textbox(label="Prompt") - img2img_type_inv = gr.Radio(["inversion"], label="",value="inversion", info="", visible=False) - submit_inv = gr.Button("Submit") - with gr.Column(): - with gr.Group(elem_id="group"): - x_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) - y_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) - output_image_inv = gr.Image(elem_id="image_out") - with gr.Row(): - generate_butt_inv = gr.Button("generate") - - with gr.Accordion(label="advanced options", open=False): - iterations_inv = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) - steps_inv = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) - guidance_scale_inv = gr.Slider( - label="Guidance scale", - minimum=0.1, - maximum=10.0, - step=0.1, - value=5, - ) - # edit_threshold=None, edit_guidance_scale = None, - # init_latents=None, zs=None - edit_threshold = gr.Slider( - label="edit threshold", - minimum=0.01, - maximum=0.99, - step=0.1, - value=0.3, - ) - edit_guidance_scale = gr.Slider( - label="edit guidance scale", - minimum=0, - maximum=20, - step=0.25, - value=5, - ) - seed_inv = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) submit.click(fn=generate, inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image]) - image_inv.change(fn=reset_do_inversion, outputs=[do_inversion]).then(fn=invert_image, inputs=[image_inv], outputs=[init_latents,zs]) - submit_inv.click(fn=generate, - inputs=[slider_x_inv, slider_y_inv, prompt_inv, seed_inv, iterations_inv, steps_inv, guidance_scale_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs], - outputs=[x_inv, y_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_inv]) - generate_butt.click(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) - generate_butt_inv.click(fn=update_scales, inputs=[x_inv,y_inv, prompt_inv, seed_inv, steps_inv, guidance_scale_inv, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs], outputs=[output_image_inv]) #x.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) #y.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) submit_a.click(fn=generate,