Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pickle | |
import numpy as np | |
# Load your trained model | |
with open("model.pkl", "rb") as f: # Adjusted the path to model.pkl | |
model = pickle.load(f) | |
# Define a function to make predictions | |
def predict(feature1, feature2, feature3, feature4, feature5): | |
features = np.array([feature1, feature2, feature3, feature4, feature5]).reshape(1, -1) | |
prediction = model.predict(features) | |
#add here conversion to penguin type | |
return prediction[0] | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.inputs.Number(label="island"), | |
gr.inputs.Number(label="bill_length_mm"), | |
gr.inputs.Number(label="bill_depth_mm"), | |
gr.inputs.Number(label="flipper_length_mm"), | |
gr.inputs.Number(label="body_mass_g") | |
], | |
outputs="text", | |
title="Penguin Classifier" | |
) | |
if __name__ == "__main__": | |
interface.launch() | |