Spaces:
Sleeping
Sleeping
Laura Cabayol Garcia
commited on
Commit
·
8bac453
1
Parent(s):
57f29d4
directory with necessary files to access model over the intrnet with HF
Browse files- UI_app/app.py +27 -0
- UI_app/model.pkl +0 -0
- UI_app/requirements.txt +10 -0
UI_app/app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load the model from the pickle file
|
8 |
+
with open('model.pkl', 'rb') as f:
|
9 |
+
model = pickle.load(f)
|
10 |
+
|
11 |
+
@app.route('/')
|
12 |
+
def home():
|
13 |
+
return "Welcome to the Penguin Classifier API!"
|
14 |
+
|
15 |
+
@app.route('/predict', methods=['POST'])
|
16 |
+
def predict():
|
17 |
+
# Parse input features from the request body (assumed to be JSON)
|
18 |
+
data = request.get_json()
|
19 |
+
features = np.array(data['features']).reshape(1, -1)
|
20 |
+
|
21 |
+
# Make prediction
|
22 |
+
prediction = model.predict(features).tolist()
|
23 |
+
|
24 |
+
return jsonify({'prediction': prediction})
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
app.run(debug=True)
|
UI_app/model.pkl
ADDED
Binary file (642 kB). View file
|
|
UI_app/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.16.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
ipykernel==6.29.5
|
4 |
+
loguru==0.7.2
|
5 |
+
numpy==2.1.1
|
6 |
+
pandas==2.2.3
|
7 |
+
python-dotenv==1.0.1
|
8 |
+
scikit-learn==1.5.2
|
9 |
+
scipy==1.14.1
|
10 |
+
gradio==3.1
|