File size: 4,474 Bytes
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a57776c
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9354dd
b25063d
 
 
a57776c
 
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a57776c
 
 
 
 
b25063d
 
 
 
 
 
 
 
 
 
 
a57776c
b25063d
a57776c
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9354dd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# ---
# jupyter:
#   jupytext:
#     formats: ipynb,py:percent
#     text_representation:
#       extension: .py
#       format_name: percent
#       format_version: '1.3'
#       jupytext_version: 1.16.2
#   kernelspec:
#     display_name: temps
#     language: python
#     name: temps
# ---

# %% [markdown]
# # FIGURE METRICS

# %% [markdown]
# ## METRICS FOR THE DIFFERENT METHODS ON THE WIDE FIELD SAMPLE

# %% [markdown]
# ### LOAD PYTHON MODULES

# %%
# %load_ext autoreload
# %autoreload 2

# %%
import pandas as pd
import numpy as np
import os
from astropy.io import fits
from astropy.table import Table
import torch
from pathlib import Path

# %%
#matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"


# %%
import temps

# %%
from temps.archive import Archive 
from temps.utils import nmad
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule
from temps.plots import plot_photoz


# %%
eval_methods=True

# %% [markdown]
# ### LOAD DATA

# %%

#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')
filename_calib = 'euclid_cosmos_DC2_S1_v2.1_calib_clean.fits'
filename_valid = 'euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'

# %%
path_file = parent_dir / filename_valid  # Creating the path to the file
hdu_list = fits.open(path_file)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat['FLAG_PHOT']==0]
cat = cat[cat['mu_class_L07']==1]
cat = cat[(cat['z_spec_S15'] > 0) | (cat['photo_z_L15'] > 0)]
cat = cat[cat['MAG_VIS']<25]


# %%
ztarget = [cat['z_spec_S15'].values[ii] if cat['z_spec_S15'].values[ii]> 0 else cat['photo_z_L15'].values[ii] for ii in range(len(cat))]
specz_or_photo = [0 if cat['z_spec_S15'].values[ii]> 0 else 1 for ii in range(len(cat))]
ID = cat['ID']
VISmag = cat['MAG_VIS']
zsflag = cat['reliable_S15']

# %%
photoz_archive = Archive(path_calib = parent_dir/filename_calib, 
                         path_valid = parent_dir/filename_valid,
                         only_zspec=False)
f = photoz_archive._extract_fluxes(catalogue= cat)
col = photoz_archive._to_colors(f)

# %% [markdown]
# ### EVALUATE USING TRAINED MODELS

# %%
if eval_methods:

    dfs = {}
    for il, lab in enumerate(['z','L15','DA']):

        nn_features = EncoderPhotometry()
        nn_features.load_state_dict(torch.load(modules_dir / f'modelF_{lab}.pt',map_location=torch.device('cpu')))
        nn_z = MeasureZ(num_gauss=6)
        nn_z.load_state_dict(torch.load(modules_dir / f'modelZ_{lab}.pt',map_location=torch.device('cpu')))

        temps_module = TempsModule(nn_features, nn_z)

        z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col), 
                                                    return_pz=True,
                                                    return_flag=True)
        # Create a DataFrame with the desired columns
        df = pd.DataFrame(np.c_[ID, VISmag,z, odds, ztarget,zsflag, specz_or_photo], 
                          columns=['ID','VISmag','z','odds', 'ztarget','zsflag','S15_L15_flag'])

        # Calculate additional columns or operations if needed
        df['zwerr'] = (df.z - df.ztarget) / (1 + df.ztarget)

        # Drop any rows with NaN values
        df = df.dropna()

        # Assign the DataFrame to a key in the dictionary
        dfs[lab] = df



# %%
dfs['z']['zwerr'] = (dfs['z'].z - dfs['z'].ztarget) / (1 + dfs['z'].ztarget)
dfs['L15']['zwerr'] = (dfs['L15'].z - dfs['L15'].ztarget) / (1 + dfs['L15'].ztarget)
dfs['DA']['zwerr'] = (dfs['DA'].z - dfs['DA'].ztarget) / (1 + dfs['DA'].ztarget)

# %% [markdown]
# ### LOAD CATALOGUES FROM PREVIOUS TRAINING

# %%
if not eval_methods:
    dfs = {}
    dfs['z'] = pd.read_csv(parent_dir /  'predictions_specztraining.csv', header=0) 
    dfs['L15'] = pd.read_csv(parent_dir /  'predictions_speczL15training.csv', header=0) 
    dfs['DA'] = pd.read_csv(parent_dir /  'predictions_speczDAtraining.csv', header=0) 


# %% [markdown]
# ### MAKE PLOT

# %%
df_list = [dfs['z'], dfs['L15'], dfs['DA']]

# %%
plot_photoz(df_list,
            nbins=8, 
            xvariable='VISmag', 
            metric='nmad', 
            type_bin='bin', 
            label_list = ['zs','zs+L15',r'TEMPS'],
            save=False,
            samp='L15'
           )

# %%