Spaces:
Runtime error
Runtime error
File size: 9,842 Bytes
b25063d f313d2c b25063d f313d2c b25063d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: temps
# language: python
# name: temps
# ---
# # FIGURE COLOURSPACE IN THE PAPER
# %load_ext autoreload
# %autoreload 2
import pandas as pd
import numpy as np
import os
from astropy.io import fits
from astropy.table import Table
import torch
from pathlib import Path
#matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"
from temps.archive import Archive
from temps.utils import nmad
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule
def estimate_som_map(df, plot_arg='z', nx=40, ny=40):
"""
Estimate a Self-Organizing Map (SOM) visualization from a DataFrame.
Parameters:
- df (pandas.DataFrame): Input DataFrame containing data for SOM estimation.
- plot_arg (str, optional): Column name to be used for plotting. Default is 'z'.
- nx (int, optional): Number of cells along the X-axis. Default is 40.
- ny (int, optional): Number of cells along the Y-axis. Default is 40.
Returns:
- som_data (numpy.ndarray): Estimated SOM visualization data.
"""
x_cells = np.arange(0, nx)
y_cells = np.arange(0, ny)
index_cell = np.arange(nx * ny)
cells = np.array(np.meshgrid(x_cells, y_cells)).T.reshape(-1, 2)
cells = pd.DataFrame(np.c_[cells[:, 0], cells[:, 1], index_cell], columns=['x_cell', 'y_cell', 'cell'])
if plot_arg == 'count':
som_vis = df.groupby('cell')['z'].count().reset_index().rename(columns={f'z': 'plot_som'})
else:
som_vis = df.groupby('cell')[f'{plot_arg}'].mean().reset_index().rename(columns={f'{plot_arg}': 'plot_som'})
som_data = som_vis.merge(cells, on='cell')
som_data = som_data.pivot(index='x_cell', columns='y_cell', values='plot_som')
return som_data
def plot_som_map(som_data, plot_arg = 'z', vmin=0, vmax=1):
"""
Plot the Self-Organizing Map (SOM) data.
Parameters:
- som_data (numpy.ndarray): The SOM data to be visualized.
- plot_arg (str, optional): The column name to be plotted. Default is 'z'.
- vmin (float, optional): Minimum value for color scaling. Default is 0.
- vmax (float, optional): Maximum value for color scaling. Default is 1.
Returns:
None
"""
plt.imshow(som_data, vmin=vmin, vmax=vmax, cmap='viridis') # Choose an appropriate colormap
plt.colorbar(label=f'{plot_arg}') # Add a colorbar with a label
plt.xlabel(r'$x$ [pixel]', fontsize=14) # Add an appropriate X-axis label
plt.ylabel(r'$y$ [pixel]', fontsize=14) # Add an appropriate Y-axis label
plt.show()
# ### LOAD DATA
#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')
filename_calib = 'euclid_cosmos_DC2_S1_v2.1_calib_clean.fits'
filename_valid = 'euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'
# +
filename_valid='euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'
hdu_list = fits.open(parent_dir/filename_valid)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat['FLAG_PHOT']==0]
cat = cat[cat['mu_class_L07']==1]
cat = cat[(cat['z_spec_S15'] > 0) | (cat['photo_z_L15'] > 0)]
cat = cat[cat['MAG_VIS']<25]
# -
ztarget = [cat['z_spec_S15'].values[ii] if cat['z_spec_S15'].values[ii]> 0 else cat['photo_z_L15'].values[ii] for ii in range(len(cat))]
specz_or_photo = [0 if cat['z_spec_S15'].values[ii]> 0 else 1 for ii in range(len(cat))]
ID = cat['ID']
VISmag = cat['MAG_VIS']
zsflag = cat['reliable_S15']
photoz_archive = Archive(path_calib = parent_dir/filename_calib,
path_valid = parent_dir/filename_valid,
only_zspec=False)
f = photoz_archive._extract_fluxes(catalogue= cat)
col = photoz_archive._to_colors(f)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# +
dfs = {}
for il, lab in enumerate(['z','L15','DA']):
nn_features = EncoderPhotometry()
nn_features.load_state_dict(torch.load(modules_dir / f'modelF_{lab}.pt',map_location=torch.device('cpu')))
nn_z = MeasureZ(num_gauss=6)
nn_z.load_state_dict(torch.load(modules_dir / f'modelZ_{lab}.pt',map_location=torch.device('cpu')))
temps_module = TempsModule(nn_features, nn_z)
z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col),
return_pz=True)
# Create a DataFrame with the desired columns
df = pd.DataFrame(np.c_[ID, VISmag,z,odds, ztarget,zsflag, specz_or_photo],
columns=['ID','VISmag','z', 'odds','ztarget','zsflag','S15_L15_flag'])
# Calculate additional columns or operations if needed
df['zwerr'] = (df.z - df.ztarget) / (1 + df.ztarget)
# Drop any rows with NaN values
df = df.dropna()
# Assign the DataFrame to a key in the dictionary
dfs[lab] = df
# -
# ### LOAD TRAINED MODELS AND EVALUATE PDFs AND REDSHIFT
#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')
df_z = dfs['z']
df_z_DA = dfs['DA']
# ##### LOAD TRAIN SOM ON TRAINING DATA
df_som = pd.read_csv(parent_dir/'som_dataframe.csv', header = 0, sep =',')
df_z = df_z.merge(df_som, on = 'ID')
df_z_DA = df_z_DA.merge(df_som, on = 'ID')
# ##### APPLY CUTS FOR DIFFERENT SAMPLES
df_zspec = df_z[(df_z.S15_L15_flag==0) & (df_z.zsflag==1)]
df_l15 = df_z[(df_z.ztarget>0)]
df_l15_DA = df_z_DA[(df_z_DA.ztarget>0)]
df_l15_euclid = df_z[(df_z.VISmag <24.5) & (df_z.z > 0.2) & (df_z.z < 2.6)]
df_l15_euclid_cut= df_l15_euclid[df_l15_euclid.odds>df_l15_euclid['odds'].quantile(0.2)]
df_l15_euclid_da = df_z_DA[(df_z_DA.VISmag <24.5) & (df_z_DA.z > 0.2) & (df_z_DA.z < 2.6)]
df_l15_euclid_cut_da= df_l15_euclid_da[df_l15_euclid_da.odds>df_l15_euclid['odds'].quantile(0.2)]
# ## MAKE SOM PLOT
from mpl_toolkits.axes_grid1 import make_axes_locatable
# +
fig, axs = plt.subplots(6, 4, figsize=(13, 15), sharex=True, sharey=True, gridspec_kw={'hspace': 0.05, 'wspace': 0.06})
# Plot in the top row (axs[0, i])
#top row, spectroscopic sample
columns = ['ztarget','z','zwerr','count']
titles = [r'$z_{true}$ (A)',r'$z$ (B)',r'$z_{\rm error}$ (C)','Counts']
limits = [[0,4],[0,4],[-0.5,0.5],[0,50]]
for ii in range(4):
som_data = estimate_som_map(df_zspec, plot_arg=columns[ii], nx=40, ny=40)
im = axs[0,ii].imshow(som_data, vmin=limits[ii][0], vmax=limits[ii][1], cmap='viridis') # Choose an appropriate colormap
axs[0, ii].set_title(f'{titles[ii]}', fontsize=18)
if ii==0:
axs[0, 0].set_ylabel(r'$y$', fontsize=14)
elif ii==1:
cbar_ax = fig.add_axes([0.49, 0.11, 0.01, 0.77])
fig.colorbar(im, cax=cbar_ax)
elif ii==2:
cbar_ax = fig.add_axes([0.685, 0.11, 0.01, 0.77])
fig.colorbar(im, cax=cbar_ax)
elif ii==3:
cbar_ax = fig.add_axes([0.885, 0.11, 0.01, 0.77])
fig.colorbar(im, cax=cbar_ax)
for jj in range(4):
som_data = estimate_som_map(df_l15, plot_arg=columns[jj], nx=40, ny=40)
im = axs[1,jj].imshow(som_data, vmin=limits[jj][0], vmax=limits[jj][1], cmap='viridis') # Choose an appropriate colormap
#axs[1, jj].set_title(f'{titles[jj]}', fontsize=14)
#axs[1, jj].set_xlabel(r'$x$', fontsize=14)
for kk in range(4):
som_data = estimate_som_map(df_l15_DA, plot_arg=columns[kk], nx=40, ny=40)
im = axs[2,kk].imshow(som_data, vmin=limits[kk][0], vmax=limits[kk][1], cmap='viridis') # Choose an appropriate colormap
#axs[2, kk].set_title(f'{titles[kk]}', fontsize=14)
#axs[2, kk].set_xlabel(r'$x$', fontsize=14)
for rr in range(4):
som_data = estimate_som_map(df_l15_euclid_da, plot_arg=columns[rr], nx=40, ny=40)
im = axs[3,rr].imshow(som_data, vmin=limits[rr][0], vmax=limits[rr][1], cmap='viridis') # Choose an appropriate colormap
#axs[3, rr].set_title(f'{titles[rr]}', fontsize=14)
#axs[3, rr].set_xlabel(r'$x$', fontsize=14)
for ll in range(4):
som_data = estimate_som_map(df_l15_euclid_cut, plot_arg=columns[ll], nx=40, ny=40)
im = axs[4,ll].imshow(som_data, vmin=limits[ll][0], vmax=limits[ll][1], cmap='viridis') # Choose an appropriate colormap
#axs[4, ll].set_title(f'{titles[ll]}', fontsize=14)
axs[4, ll].set_xlabel(r'$x$', fontsize=14)
for ll in range(4):
som_data = estimate_som_map(df_l15_euclid_cut_da, plot_arg=columns[ll], nx=40, ny=40)
im = axs[5,ll].imshow(som_data, vmin=limits[ll][0], vmax=limits[ll][1], cmap='viridis') # Choose an appropriate colormap
#axs[4, ll].set_title(f'{titles[ll]}', fontsize=14)
axs[5, ll].set_xlabel(r'$x$', fontsize=14)
axs[0, 0].set_ylabel(r'$y$', fontsize=14)
axs[1, 0].set_ylabel(r'$y$', fontsize=14)
axs[2, 0].set_ylabel(r'$y$', fontsize=14)
axs[3, 0].set_ylabel(r'$y$', fontsize=14)
axs[4, 0].set_ylabel(r'$y$', fontsize=14)
axs[5, 0].set_ylabel(r'$y$', fontsize=14)
fig.text(0.09, 0.815, r'$z_{\rm s}$ samp. (1)', va='center', rotation='vertical', fontsize=16)
fig.text(0.09, 0.69, r'L15 samp. (2)', va='center', rotation='vertical', fontsize=16)
fig.text(0.09, 0.56, r'L15 samp. + DA (3)', va='center', rotation='vertical', fontsize=14)
fig.text(0.09, 0.44, r'$Euclid$ samp. + DA (4)', va='center', rotation='vertical', fontsize=14)
fig.text(0.09, 0.3, r'$Euclid$ samp. + QC (5)', va='center', rotation='vertical', fontsize=14)
fig.text(0.09, 0.17, r'(5) + DA ', va='center', rotation='vertical', fontsize=13)
plt.savefig('SOM_colourspace.pdf', format='pdf', bbox_inches='tight', dpi=300)
# -
|