File size: 9,842 Bytes
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f313d2c
 
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f313d2c
 
 
 
 
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.16.2
#   kernelspec:
#     display_name: temps
#     language: python
#     name: temps
# ---

# # FIGURE COLOURSPACE IN THE PAPER

# %load_ext autoreload
# %autoreload 2

import pandas as pd
import numpy as np
import os
from astropy.io import fits
from astropy.table import Table
import torch
from pathlib import Path

#matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"

from temps.archive import Archive 
from temps.utils import nmad
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule


def estimate_som_map(df, plot_arg='z', nx=40, ny=40):
    """
    Estimate a Self-Organizing Map (SOM) visualization from a DataFrame.

    Parameters:
    - df (pandas.DataFrame): Input DataFrame containing data for SOM estimation.
    - plot_arg (str, optional): Column name to be used for plotting. Default is 'z'.
    - nx (int, optional): Number of cells along the X-axis. Default is 40.
    - ny (int, optional): Number of cells along the Y-axis. Default is 40.

    Returns:
    - som_data (numpy.ndarray): Estimated SOM visualization data.
    """
    x_cells = np.arange(0, nx)
    y_cells = np.arange(0, ny)
    index_cell = np.arange(nx * ny)
    cells = np.array(np.meshgrid(x_cells, y_cells)).T.reshape(-1, 2)
    cells = pd.DataFrame(np.c_[cells[:, 0], cells[:, 1], index_cell], columns=['x_cell', 'y_cell', 'cell'])

    if plot_arg == 'count':
        som_vis = df.groupby('cell')['z'].count().reset_index().rename(columns={f'z': 'plot_som'})
    else:
        som_vis = df.groupby('cell')[f'{plot_arg}'].mean().reset_index().rename(columns={f'{plot_arg}': 'plot_som'})

    som_data = som_vis.merge(cells, on='cell')
    som_data = som_data.pivot(index='x_cell', columns='y_cell', values='plot_som')

    return som_data



def plot_som_map(som_data, plot_arg = 'z', vmin=0, vmax=1):
    """
    Plot the Self-Organizing Map (SOM) data.

    Parameters:
    - som_data (numpy.ndarray): The SOM data to be visualized.
    - plot_arg (str, optional): The column name to be plotted. Default is 'z'.
    - vmin (float, optional): Minimum value for color scaling. Default is 0.
    - vmax (float, optional): Maximum value for color scaling. Default is 1.

    Returns:
    None
    """
    plt.imshow(som_data, vmin=vmin, vmax=vmax, cmap='viridis')  # Choose an appropriate colormap
    plt.colorbar(label=f'{plot_arg}')  # Add a colorbar with a label
    plt.xlabel(r'$x$ [pixel]', fontsize=14)  # Add an appropriate X-axis label
    plt.ylabel(r'$y$ [pixel]', fontsize=14)  # Add an appropriate Y-axis label
    plt.show()



# ### LOAD DATA

#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')
filename_calib = 'euclid_cosmos_DC2_S1_v2.1_calib_clean.fits'
filename_valid = 'euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'

# +
filename_valid='euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'

hdu_list = fits.open(parent_dir/filename_valid)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat['FLAG_PHOT']==0]
cat = cat[cat['mu_class_L07']==1]
cat = cat[(cat['z_spec_S15'] > 0) | (cat['photo_z_L15'] > 0)]
cat = cat[cat['MAG_VIS']<25]

# -

ztarget = [cat['z_spec_S15'].values[ii] if cat['z_spec_S15'].values[ii]> 0 else cat['photo_z_L15'].values[ii] for ii in range(len(cat))]
specz_or_photo = [0 if cat['z_spec_S15'].values[ii]> 0 else 1 for ii in range(len(cat))]
ID = cat['ID']
VISmag = cat['MAG_VIS']
zsflag = cat['reliable_S15']

photoz_archive = Archive(path_calib = parent_dir/filename_calib, 
                         path_valid = parent_dir/filename_valid,
                         only_zspec=False)
f = photoz_archive._extract_fluxes(catalogue= cat)
col = photoz_archive._to_colors(f)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# +
dfs = {}

for il, lab in enumerate(['z','L15','DA']):

    nn_features = EncoderPhotometry()
    nn_features.load_state_dict(torch.load(modules_dir / f'modelF_{lab}.pt',map_location=torch.device('cpu')))
    nn_z = MeasureZ(num_gauss=6)
    nn_z.load_state_dict(torch.load(modules_dir / f'modelZ_{lab}.pt',map_location=torch.device('cpu')))
    
    temps_module = TempsModule(nn_features, nn_z)
    
    z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col), 
                                return_pz=True)
    # Create a DataFrame with the desired columns
    df = pd.DataFrame(np.c_[ID, VISmag,z,odds, ztarget,zsflag, specz_or_photo], 
                      columns=['ID','VISmag','z', 'odds','ztarget','zsflag','S15_L15_flag'])

    # Calculate additional columns or operations if needed
    df['zwerr'] = (df.z - df.ztarget) / (1 + df.ztarget)

    # Drop any rows with NaN values
    df = df.dropna()

    # Assign the DataFrame to a key in the dictionary
    dfs[lab] = df

# -

# ### LOAD TRAINED MODELS AND EVALUATE PDFs AND REDSHIFT

#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')

df_z = dfs['z']
df_z_DA = dfs['DA']

# ##### LOAD TRAIN SOM ON TRAINING DATA

df_som = pd.read_csv(parent_dir/'som_dataframe.csv', header = 0, sep =',')
df_z = df_z.merge(df_som, on = 'ID')
df_z_DA = df_z_DA.merge(df_som, on = 'ID')

# ##### APPLY CUTS FOR DIFFERENT SAMPLES

df_zspec = df_z[(df_z.S15_L15_flag==0) & (df_z.zsflag==1)]
df_l15 = df_z[(df_z.ztarget>0)]
df_l15_DA = df_z_DA[(df_z_DA.ztarget>0)]

df_l15_euclid = df_z[(df_z.VISmag <24.5) & (df_z.z > 0.2) & (df_z.z < 2.6)]
df_l15_euclid_cut= df_l15_euclid[df_l15_euclid.odds>df_l15_euclid['odds'].quantile(0.2)]

df_l15_euclid_da = df_z_DA[(df_z_DA.VISmag <24.5) & (df_z_DA.z > 0.2) & (df_z_DA.z < 2.6)]
df_l15_euclid_cut_da= df_l15_euclid_da[df_l15_euclid_da.odds>df_l15_euclid['odds'].quantile(0.2)]

# ## MAKE SOM PLOT

from mpl_toolkits.axes_grid1 import make_axes_locatable

# +
fig, axs = plt.subplots(6, 4, figsize=(13, 15), sharex=True, sharey=True, gridspec_kw={'hspace': 0.05, 'wspace': 0.06})

# Plot in the top row (axs[0, i])
#top row, spectroscopic sample
columns = ['ztarget','z','zwerr','count']
titles = [r'$z_{true}$ (A)',r'$z$ (B)',r'$z_{\rm error}$ (C)','Counts']
limits = [[0,4],[0,4],[-0.5,0.5],[0,50]]
for ii in range(4):
    som_data = estimate_som_map(df_zspec, plot_arg=columns[ii], nx=40, ny=40)
    im = axs[0,ii].imshow(som_data, vmin=limits[ii][0], vmax=limits[ii][1], cmap='viridis')  # Choose an appropriate colormap
    axs[0, ii].set_title(f'{titles[ii]}', fontsize=18)
    
    if ii==0:
        axs[0, 0].set_ylabel(r'$y$', fontsize=14)
    elif ii==1:
        cbar_ax = fig.add_axes([0.49, 0.11, 0.01, 0.77])
        fig.colorbar(im, cax=cbar_ax)
    elif ii==2:
        cbar_ax = fig.add_axes([0.685, 0.11, 0.01, 0.77])
        fig.colorbar(im, cax=cbar_ax)
    elif ii==3:
        cbar_ax = fig.add_axes([0.885, 0.11, 0.01, 0.77])
        fig.colorbar(im, cax=cbar_ax)

for jj in range(4):
    som_data = estimate_som_map(df_l15, plot_arg=columns[jj], nx=40, ny=40)
    im = axs[1,jj].imshow(som_data, vmin=limits[jj][0], vmax=limits[jj][1], cmap='viridis')  # Choose an appropriate colormap
    #axs[1, jj].set_title(f'{titles[jj]}', fontsize=14)
    #axs[1, jj].set_xlabel(r'$x$', fontsize=14)
    
    
for kk in range(4):
    som_data = estimate_som_map(df_l15_DA, plot_arg=columns[kk], nx=40, ny=40)
    im = axs[2,kk].imshow(som_data, vmin=limits[kk][0], vmax=limits[kk][1], cmap='viridis')  # Choose an appropriate colormap
    #axs[2, kk].set_title(f'{titles[kk]}', fontsize=14)
    #axs[2, kk].set_xlabel(r'$x$', fontsize=14)
    
for rr in range(4):
    som_data = estimate_som_map(df_l15_euclid_da, plot_arg=columns[rr], nx=40, ny=40)
    im = axs[3,rr].imshow(som_data, vmin=limits[rr][0], vmax=limits[rr][1], cmap='viridis')  # Choose an appropriate colormap
    #axs[3, rr].set_title(f'{titles[rr]}', fontsize=14)
    #axs[3, rr].set_xlabel(r'$x$', fontsize=14)
    
for ll in range(4):
    som_data = estimate_som_map(df_l15_euclid_cut, plot_arg=columns[ll], nx=40, ny=40)
    im = axs[4,ll].imshow(som_data, vmin=limits[ll][0], vmax=limits[ll][1], cmap='viridis')  # Choose an appropriate colormap
    #axs[4, ll].set_title(f'{titles[ll]}', fontsize=14)
    axs[4, ll].set_xlabel(r'$x$', fontsize=14)
    
for ll in range(4):
    som_data = estimate_som_map(df_l15_euclid_cut_da, plot_arg=columns[ll], nx=40, ny=40)
    im = axs[5,ll].imshow(som_data, vmin=limits[ll][0], vmax=limits[ll][1], cmap='viridis')  # Choose an appropriate colormap
    #axs[4, ll].set_title(f'{titles[ll]}', fontsize=14)
    axs[5, ll].set_xlabel(r'$x$', fontsize=14)

    
axs[0, 0].set_ylabel(r'$y$', fontsize=14)
axs[1, 0].set_ylabel(r'$y$', fontsize=14)
axs[2, 0].set_ylabel(r'$y$', fontsize=14)
axs[3, 0].set_ylabel(r'$y$', fontsize=14)
axs[4, 0].set_ylabel(r'$y$', fontsize=14)
axs[5, 0].set_ylabel(r'$y$', fontsize=14)


fig.text(0.09, 0.815, r'$z_{\rm s}$ samp. (1)', va='center', rotation='vertical', fontsize=16)
fig.text(0.09, 0.69, r'L15 samp. (2)', va='center', rotation='vertical', fontsize=16)
fig.text(0.09, 0.56, r'L15 samp. + DA (3)', va='center', rotation='vertical', fontsize=14)
fig.text(0.09, 0.44, r'$Euclid$ samp. + DA (4)', va='center', rotation='vertical', fontsize=14)
fig.text(0.09, 0.3, r'$Euclid$ samp. + QC (5)', va='center', rotation='vertical', fontsize=14)

fig.text(0.09, 0.17, r'(5) + DA ', va='center', rotation='vertical', fontsize=13)


plt.savefig('SOM_colourspace.pdf', format='pdf', bbox_inches='tight', dpi=300)

# -