Spaces:
Runtime error
Runtime error
File size: 7,269 Bytes
b25063d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: temps
# language: python
# name: temps
# ---
# # QUALITY CUTS
# %load_ext autoreload
# %autoreload 2
import pandas as pd
import numpy as np
import os
import torch
from scipy import stats
from pathlib import Path
#matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"
from temps.archive import Archive
from temps.utils import nmad, caluclate_eta
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule
# ### LOAD DATA (ONLY SPECZ)
#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')
photoz_archive = Archive(path = parent_dir,only_zspec=True,flags_kept=[1. , 1.1, 1.4, 1.5, 2,2.1,2.4,2.5,3., 3.1, 3.4, 3.5, 4., 9. , 9.1, 9.3, 9.4, 9.5,11.1, 11.5, 12.1, 12.5, 13. , 13.1, 13.5, 14, ])
f_test_specz, ferr_test_specz, specz_test ,VIS_mag_test = photoz_archive.get_testing_data()
# ### LOAD TRAINED MODELS AND EVALUATE PDF OF RANDOM EXAMPLES
# Initialize an empty dictionary to store DataFrames
dfs = {}
pzs = np.zeros(shape = (3,11016,1000))
for il, lab in enumerate(['z','L15','DA']):
nn_features = EncoderPhotometry()
nn_features.load_state_dict(torch.load(modules_dir / f'modelF_{lab}.pt',map_location=torch.device('cpu')))
nn_z = MeasureZ(num_gauss=6)
nn_z.load_state_dict(torch.load(modules_dir / f'modelZ_{lab}.pt', map_location=torch.device('cpu')))
temps_module = TempsModule(nn_features, nn_z)
z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(f_test_specz),
return_pz=True)
pzs[il] = pz
# Create a DataFrame with the desired columns
df = pd.DataFrame(np.c_[z, odds, specz_test],
columns=['z', 'odds' ,'ztarget'])
# Calculate additional columns or operations if needed
df['zwerr'] = (df.z - df.ztarget) / (1 + df.ztarget)
# Drop any rows with NaN values
df = df.dropna()
# Assign the DataFrame to a key in the dictionary
dfs[lab] = df
# ### STATS
# +
#odds_test = [0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15]
odds_test = np.arange(0,0.15,0.01)
df = dfs['DA'].copy()
zgrid = np.linspace(0, 5, 1000)
pz = pzs[2]
# -
diff_matrix = np.abs(df.z.values[:,None] - zgrid[None,:])
idx_peak = np.argmax(pz,1)
idx = np.argmin(diff_matrix,1)
odds_cat = np.zeros(shape = (len(odds_test),len(df)))
for ii, odds_ in enumerate(odds_test):
diff_matrix_upper = np.abs((df.z.values+odds_)[:,None] - zgrid[None,:])
diff_matrix_lower = np.abs((df.z.values-odds_)[:,None] - zgrid[None,:])
idx = np.argmin(diff_matrix,1)
idx_upper = np.argmin(diff_matrix_upper,1)
idx_lower = np.argmin(diff_matrix_lower,1)
odds = []
for jj in range(len(pz)):
odds.append(pz[jj,idx_lower[jj]:(idx_upper[jj]+1)].sum())
odds_cat[ii] = np.array(odds)
odds_df = pd.DataFrame(odds_cat.T, columns=[f'odds_{x}' for x in odds_test])
df = pd.concat([df, odds_df], axis=1)
# ## statistics on ODDS
# +
scatter_odds, eta_odds,xlab_odds, oddsmean = [],[],[], []
for c in complenteness:
percentile_cutoff = df['odds'].quantile(c)
df_bin = df[(df.odds > percentile_cutoff)]
xlab_odds.append((1-c)*100)
oddsmean.append(np.mean(df_bin.odds))
scatter_odds.append(nmad(df_bin.zwerr))
eta_odds.append(caluclate_eta(df_bin))
if np.round(c,1) ==0.3:
percentiles_cutoff = [df[f'odds_{col}'].quantile(c) for col in odds_test]
scatters_odds = [nmad(df[df[f'odds_{col}'] > percentile_cutoff].zwerr) for (col, percentile_cutoff) in zip(odds_test,percentiles_cutoff)]
etas_odds = [caluclate_eta(df[df[f'odds_{col}'] > percentile_cutoff]) for (col, percentile_cutoff) in zip(odds_test,percentiles_cutoff)]
# -
df_completeness = pd.DataFrame(np.c_[xlab_odds,scatter_odds, eta_odds],
columns = ['completeness', 'sigma_odds', 'eta_odds'])
# ## PLOTS
# +
# Initialize the figure and axis
fig, ax1 = plt.subplots(figsize=(7, 5))
# First plot (Sigma) - using the left y-axis
color = 'crimson'
ax1.plot(df_completeness.completeness,
df_completeness.sigma_odds,
marker='.',
color=color,
label=r'NMAD',
ls='-',
alpha=0.5,
)
ax1.set_xlabel('Completeness', fontsize=16)
ax1.set_ylabel(r'NMAD [$\Delta z$]', color=color, fontsize=16)
ax1.tick_params(axis='x', labelsize=14)
ax1.tick_params(axis='y', which='major', labelsize = 14, width=2.5, length=3, labelcolor=color)
ax1.set_xticks(np.arange(5, 101, 10))
ax2 = ax1.twinx() # Create another y-axis that shares the same x-axis
color = 'navy'
ax2.plot(df_completeness.completeness,
df_completeness.eta_odds,
marker='.',
color=color,
label=r'$\eta$ [%]',
ls='--',
alpha=0.5)
ax2.set_ylabel(r'$\eta$ [%]', color=color, fontsize=16)
# Adjust notation to allow comparison
ax1.yaxis.get_major_formatter().set_powerlimits((0, 0)) # Adjust scientific notation for Sigma
ax2.yaxis.get_major_formatter().set_powerlimits((0, 0)) # Adjust scientific notation for Eta
ax2.tick_params(axis='x', labelsize=14)
ax2.tick_params(axis='y', which='major', labelsize = 14, width=2.5, length=3, labelcolor=color)
# Final adjustments
fig.tight_layout()
fig.legend(bbox_to_anchor = [-0.18,0.75,0.5,0.2], fontsize = 14)
#plt.savefig('Flag_nmad_eta_sigma_comparison.pdf', bbox_inches='tight')
plt.show()
# +
# Initialize the figure and axis
fig, ax1 = plt.subplots(figsize=(7, 5))
# First plot (Sigma) - using the left y-axis
color = 'crimson'
ax1.plot(odds_test,
scatters_odds,
marker='.',
color=color,
label=r'NMAD',
ls='-',
alpha=0.5,
)
ax1.set_xlabel(r'$\delta z$ (ODDS)', fontsize=16)
ax1.set_ylabel(r'NMAD [$\Delta z$]', color=color, fontsize=16)
ax1.tick_params(axis='x', labelsize=14)
ax1.tick_params(axis='y', which='major', labelsize = 14, width=2.5, length=3, labelcolor=color)
ax1.set_xticks(np.arange(0,0.16,0.02))
ax2 = ax1.twinx() # Create another y-axis that shares the same x-axis
color = 'navy'
ax2.plot(odds_test,
etas_odds,
marker='.',
color=color,
label=r'$\eta$ [%]',
ls='--',
alpha=0.5)
ax2.set_ylabel(r'$\eta$ [%]', color=color, fontsize=16)
# Adjust notation to allow comparison
ax1.yaxis.get_major_formatter().set_powerlimits((0, 0)) # Adjust scientific notation for Sigma
ax2.yaxis.get_major_formatter().set_powerlimits((0, 0)) # Adjust scientific notation for Eta
ax2.tick_params(axis='x', labelsize=14)
ax2.tick_params(axis='y', which='major', labelsize = 14, width=2.5, length=3, labelcolor=color)
# Final adjustments
fig.tight_layout()
fig.legend(bbox_to_anchor = [0.10,0.75,0.5,0.2], fontsize = 14)
#plt.savefig('ODDS_study.pdf', bbox_inches='tight')
plt.show()
# -
|