File size: 3,772 Bytes
b25063d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.16.2
#   kernelspec:
#     display_name: temps
#     language: python
#     name: temps
# ---

# # TABLE METRICS

# %load_ext autoreload
# %autoreload 2

import pandas as pd
import numpy as np
import os
import torch
from scipy import stats
from astropy.io import fits
from astropy.table import Table
from pathlib import Path

#matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"

from temps.archive import Archive 
from temps.utils import nmad, select_cut
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule


# ## LOAD DATA

#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')

# +
filename_valid='euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'

hdu_list = fits.open(parent_dir / filename_valid)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat['FLAG_PHOT']==0]
cat = cat[cat['mu_class_L07']==1]

cat['SNR_VIS'] = cat.FLUX_VIS / cat.FLUXERR_VIS
# -

cat = cat[cat.SNR_VIS>10]

ztarget = [cat['z_spec_S15'].values[ii] if cat['z_spec_S15'].values[ii]> 0 else cat['photo_z_L15'].values[ii] for ii in range(len(cat))]
specz_or_photo = [0 if cat['z_spec_S15'].values[ii]> 0 else 1 for ii in range(len(cat))]
ID = cat['ID']
VISmag = cat['MAG_VIS']
zsflag = cat['reliable_S15']

cat['ztarget']=ztarget
cat['specz_or_photo']=specz_or_photo

cat = cat[cat.ztarget>0]

# ### EXTRACT PHOTOMETRY

photoz_archive = Archive(path = parent_dir,only_zspec=False)
f, ferr = photoz_archive._extract_fluxes(catalogue= cat)
col, colerr = photoz_archive._to_colors(f, ferr)

# ### MEASURE CATALOGUE

# +
# Initialize an empty dictionary to store DataFrames
lab='DA'    
nn_features = EncoderPhotometry()
nn_features.load_state_dict(torch.load(modules_dir / f'modelF_{lab}.pt', map_location=torch.device('cpu')))
nn_z = MeasureZ(num_gauss=6)
nn_z.load_state_dict(torch.load(modules_dir / f'modelZ_{lab}.pt', map_location=torch.device('cpu')))

temps_module = TempsModule(nn_features, nn_z)

z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col), 
                            return_pz=True)


# Create a DataFrame with the desired columns
df = pd.DataFrame(np.c_[z, odds, cat.ztarget, cat.reliable_S15, cat.specz_or_photo], 
                  columns=['z', 'odds' ,'ztarget','reliable_S15', 'specz_or_photo'])

# Calculate additional columns or operations if needed
df['zwerr'] = (df.z - df.ztarget) / (1 + df.ztarget)

# Drop any rows with NaN values
df = df.dropna()


# -

# ### SPECZ SAMPLE

df_specz = df[(df.reliable_S15==1)&(df.specz_or_photo==0)]

# +
df_selected, cut, dfcuts  = select_cut(df_specz,
                          completenss_lim=None, 
                          nmad_lim=0.055, 
                          outliers_lim=None, 
                          return_df=True)


# -

print(dfcuts.to_latex(float_format="%.3f",
                columns=['Nobj','completeness', 'nmad', 'eta'],
                index=False
               ))

# ### EUCLID SAMPLE

df_euclid = df[(df.z >0.2)&(df.z < 2.6)]

df_euclid

# +
df_selected, cut, dfcuts  = select_cut(df_euclid,
                          completenss_lim=None, 
                          nmad_lim= 0.05, 
                          outliers_lim=None, 
                          return_df=True)


# -

print(dfcuts.to_latex(float_format="%.3f",
                columns=['Nobj','completeness', 'nmad', 'eta'],
                index=False
               ))