Spaces:
Runtime error
Runtime error
File size: 3,772 Bytes
b25063d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: temps
# language: python
# name: temps
# ---
# # TABLE METRICS
# %load_ext autoreload
# %autoreload 2
import pandas as pd
import numpy as np
import os
import torch
from scipy import stats
from astropy.io import fits
from astropy.table import Table
from pathlib import Path
#matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"
from temps.archive import Archive
from temps.utils import nmad, select_cut
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule
# ## LOAD DATA
#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')
# +
filename_valid='euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'
hdu_list = fits.open(parent_dir / filename_valid)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat['FLAG_PHOT']==0]
cat = cat[cat['mu_class_L07']==1]
cat['SNR_VIS'] = cat.FLUX_VIS / cat.FLUXERR_VIS
# -
cat = cat[cat.SNR_VIS>10]
ztarget = [cat['z_spec_S15'].values[ii] if cat['z_spec_S15'].values[ii]> 0 else cat['photo_z_L15'].values[ii] for ii in range(len(cat))]
specz_or_photo = [0 if cat['z_spec_S15'].values[ii]> 0 else 1 for ii in range(len(cat))]
ID = cat['ID']
VISmag = cat['MAG_VIS']
zsflag = cat['reliable_S15']
cat['ztarget']=ztarget
cat['specz_or_photo']=specz_or_photo
cat = cat[cat.ztarget>0]
# ### EXTRACT PHOTOMETRY
photoz_archive = Archive(path = parent_dir,only_zspec=False)
f, ferr = photoz_archive._extract_fluxes(catalogue= cat)
col, colerr = photoz_archive._to_colors(f, ferr)
# ### MEASURE CATALOGUE
# +
# Initialize an empty dictionary to store DataFrames
lab='DA'
nn_features = EncoderPhotometry()
nn_features.load_state_dict(torch.load(modules_dir / f'modelF_{lab}.pt', map_location=torch.device('cpu')))
nn_z = MeasureZ(num_gauss=6)
nn_z.load_state_dict(torch.load(modules_dir / f'modelZ_{lab}.pt', map_location=torch.device('cpu')))
temps_module = TempsModule(nn_features, nn_z)
z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col),
return_pz=True)
# Create a DataFrame with the desired columns
df = pd.DataFrame(np.c_[z, odds, cat.ztarget, cat.reliable_S15, cat.specz_or_photo],
columns=['z', 'odds' ,'ztarget','reliable_S15', 'specz_or_photo'])
# Calculate additional columns or operations if needed
df['zwerr'] = (df.z - df.ztarget) / (1 + df.ztarget)
# Drop any rows with NaN values
df = df.dropna()
# -
# ### SPECZ SAMPLE
df_specz = df[(df.reliable_S15==1)&(df.specz_or_photo==0)]
# +
df_selected, cut, dfcuts = select_cut(df_specz,
completenss_lim=None,
nmad_lim=0.055,
outliers_lim=None,
return_df=True)
# -
print(dfcuts.to_latex(float_format="%.3f",
columns=['Nobj','completeness', 'nmad', 'eta'],
index=False
))
# ### EUCLID SAMPLE
df_euclid = df[(df.z >0.2)&(df.z < 2.6)]
df_euclid
# +
df_selected, cut, dfcuts = select_cut(df_euclid,
completenss_lim=None,
nmad_lim= 0.05,
outliers_lim=None,
return_df=True)
# -
print(dfcuts.to_latex(float_format="%.3f",
columns=['Nobj','completeness', 'nmad', 'eta'],
index=False
))
|