Spaces:
Runtime error
Runtime error
File size: 8,277 Bytes
c212435 d307831 57fa8fc c9354dd c212435 d307831 c9354dd d307831 c9354dd 57fa8fc d307831 c9354dd 57fa8fc d307831 c9354dd d307831 57fa8fc c9354dd d307831 c9354dd d307831 57fa8fc d307831 57fa8fc d307831 57fa8fc d307831 57fa8fc d307831 57fa8fc d307831 94ab0b0 57fa8fc c9354dd 57fa8fc c9354dd 94ab0b0 57fa8fc c9354dd 57fa8fc 94ab0b0 57fa8fc 94ab0b0 c9354dd 57fa8fc 94ab0b0 57fa8fc 94ab0b0 57fa8fc c9354dd 57fa8fc 94ab0b0 57fa8fc c9354dd 57fa8fc 94ab0b0 57fa8fc c9354dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import torch
from loguru import logger
from typing import Optional, Tuple, Union
def calculate_eta(df: pd.DataFrame) -> float:
"""Calculate the percentage of outliers in the DataFrame based on zwerr column."""
return len(df[np.abs(df.zwerr) > 0.15]) / len(df) * 100
def nmad(data: Union[np.ndarray, pd.Series]) -> float:
"""Calculate the normalized median absolute deviation (NMAD) of the data."""
return 1.4826 * np.median(np.abs(data - np.median(data)))
def sigma68(data: Union[np.ndarray, pd.Series]) -> float:
"""Calculate the sigma68 metric, a robust measure of dispersion."""
return 0.5 * (pd.Series(data).quantile(q=0.84) - pd.Series(data).quantile(q=0.16))
def maximum_mean_discrepancy(
x: torch.Tensor,
y: torch.Tensor,
kernel_type: str = "rbf",
kernel_mul: float = 2.0,
kernel_num: int = 5,
) -> torch.Tensor:
"""
Compute the Maximum Mean Discrepancy (MMD) between two sets of samples.
Args:
- x: Tensor, samples from the source domain
- y: Tensor, samples from the target domain
- kernel_type: str, the type of kernel to be used ('linear', 'poly', 'rbf', 'sigmoid')
- kernel_mul: float, multiplier for the kernel bandwidth
- kernel_num: int, number of kernels for the MMD approximation
Returns:
- mmd_loss: Tensor, the MMD loss
"""
x_kernel = compute_kernel(x, x, kernel_type, kernel_mul, kernel_num)
y_kernel = compute_kernel(y, y, kernel_type, kernel_mul, kernel_num)
xy_kernel = compute_kernel(x, y, kernel_type, kernel_mul, kernel_num)
mmd_loss = torch.mean(x_kernel) + torch.mean(y_kernel) - 2 * torch.mean(xy_kernel)
return mmd_loss
def compute_kernel(
x: torch.Tensor,
y: torch.Tensor,
kernel_type: str = "rbf",
kernel_mul: float = 2.0,
kernel_num: int = 5,
) -> torch.Tensor:
"""
Compute the kernel matrix based on the chosen kernel type.
Args:
- x: Tensor, samples
- y: Tensor, samples
- kernel_type: str, the type of kernel to be used ('linear', 'poly', 'rbf', 'sigmoid')
- kernel_mul: float, multiplier for the kernel bandwidth
- kernel_num: int, number of kernels for the MMD approximation
Returns:
- kernel_matrix: Tensor, the computed kernel matrix
"""
x_size = x.size(0)
y_size = y.size(0)
dim = x.size(1)
x = x.unsqueeze(1).expand(x_size, y_size, dim)
y = y.unsqueeze(0).expand(x_size, y_size, dim)
kernel_input = (x - y).pow(2).mean(2)
if kernel_type == "linear":
kernel_matrix = kernel_input
elif kernel_type == "poly":
kernel_matrix = (1 + kernel_input / kernel_mul).pow(kernel_num)
elif kernel_type == "rbf":
kernel_matrix = torch.exp(-kernel_input / (2 * kernel_mul**2))
elif kernel_type == "sigmoid":
kernel_matrix = torch.tanh(kernel_mul * kernel_input)
else:
raise ValueError(
"Invalid kernel type. Supported types are 'linear', 'poly', 'rbf', and 'sigmoid'."
)
return kernel_matrix
def select_cut(
df: pd.DataFrame,
completenss_lim: Optional[float] = None,
nmad_lim: Optional[float] = None,
outliers_lim: Optional[float] = None,
return_df: bool = False,
) -> Union[Tuple[pd.DataFrame, float, pd.DataFrame], Tuple[float, pd.DataFrame]]:
"""
Selects a cut based on one of the provided limits (completeness, NMAD, or outliers).
Args:
- df: DataFrame, containing the data
- completenss_lim: float, optional limit on completeness
- nmad_lim: float, optional limit on NMAD
- outliers_lim: float, optional limit on outliers (eta)
- return_df: bool, whether to return the filtered DataFrame
Returns:
- selected_cut: If return_df is False, returns the cut value and a DataFrame of cuts.
If return_df is True, returns the filtered DataFrame, cut value, and cuts DataFrame.
"""
if (completenss_lim is None) and (nmad_lim is None) and (outliers_lim is None):
raise ValueError("Select at least one cut")
elif sum(c is not None for c in [completenss_lim, nmad_lim, outliers_lim]) > 1:
raise ValueError("Select only one cut at a time")
bin_edges = stats.mstats.mquantiles(df.odds, np.arange(0, 1.01, 0.1))
scatter, eta, cmptnss, nobj = [], [], [], []
for k in range(len(bin_edges) - 1):
edge_min = bin_edges[k]
edge_max = bin_edges[k + 1]
df_bin = df[(df.odds > edge_min)]
cmptnss.append(np.round(len(df_bin) / len(df), 2) * 100)
scatter.append(nmad(df_bin.zwerr))
eta.append(len(df_bin[np.abs(df_bin.zwerr) > 0.15]) / len(df_bin) * 100)
nobj.append(len(df_bin))
dfcuts = pd.DataFrame(
data=np.c_[
np.round(bin_edges[:-1], 5),
np.round(nobj, 1),
np.round(cmptnss, 1),
np.round(scatter, 3),
np.round(eta, 2),
],
columns=["flagcut", "Nobj", "completeness", "nmad", "eta"],
)
if completenss_lim is not None:
logger.info("Selecting cut based on completeness")
selected_cut = dfcuts[dfcuts["completeness"] <= completenss_lim].iloc[0]
elif nmad_lim is not None:
logger.info("Selecting cut based on NMAD")
selected_cut = dfcuts[dfcuts["nmad"] <= nmad_lim].iloc[0]
elif outliers_lim is not None:
logger.info("Selecting cut based on outliers")
selected_cut = dfcuts[dfcuts["eta"] <= outliers_lim].iloc[0]
logger.info(
f"This cut provides completeness of {selected_cut['completeness']}, "
f"nmad={selected_cut['nmad']} and eta={selected_cut['eta']}"
)
df_cut = df[(df.odds > selected_cut["flagcut"])]
if return_df:
return df_cut, selected_cut["flagcut"], dfcuts
else:
return selected_cut["flagcut"], dfcuts
def calculate_pit(model_f: nn.Module,
model_z: nn.Module,
input_data: Tensor,
target_data: Tensor,
) -> List[float]:
logger.info('Calculating PIT values')
pit_list = []
model_f = model_f.eval()
model_f = model_f.to(self.device)
model_z = model_z.eval()
model_z = model_z.to(self.device)
input_data = input_data.to(self.device)
features = model_f(input_data)
mu, logsig, logmix_coeff = model_z(features)
logsig = torch.clamp(logsig,-6,2)
sig = torch.exp(logsig)
mix_coeff = torch.exp(logmix_coeff)
mu, mix_coeff, sig = mu.detach().cpu().numpy(), mix_coeff.detach().cpu().numpy(), sig.detach().cpu().numpy()
for ii in range(len(input_data)):
pit = (mix_coeff[ii] * norm.cdf(target_data[ii]*np.ones(mu[ii].shape),mu[ii], sig[ii])).sum()
pit_list.append(pit)
return pit_list
def calculate_crps(model_f: nn.Module,
model_z: nn.Module,
input_data: Tensor,
target_data: Tensor,
) -> List[float]:
logger.info('Calculating CRPS values')
def measure_crps(cdf, t):
zgrid = np.linspace(0,4,1000)
Deltaz = zgrid[None,:] - t[:,None]
DeltaZ_heaviside = np.where(Deltaz < 0,0,1)
integral = (cdf-DeltaZ_heaviside)**2
crps_value = integral.sum(1) / 1000
return crps_value
crps_list = []
model_f = model_f.eval()
model_f = model_f.to(self.device)
model_z = model_z.eval()
model_z = model_z.to(self.device)
input_data = input_data.to(self.device)
features = model_f(input_data)
mu, logsig, logmix_coeff = model_z(features)
logsig = torch.clamp(logsig,-6,2)
sig = torch.exp(logsig)
mix_coeff = torch.exp(logmix_coeff)
mu, mix_coeff, sig = mu.detach().cpu().numpy(), mix_coeff.detach().cpu().numpy(), sig.detach().cpu().numpy()
z = (mix_coeff * mu).sum(1)
x = np.linspace(0, 4, 1000)
pz = np.zeros(shape=(len(target_data), len(x)))
for ii in range(len(input_data)):
for i in range(6):
pz[ii] += mix_coeff[ii,i] * norm.pdf(x, mu[ii,i], sig[ii,i])
pz = pz / pz.sum(1)[:,None]
cdf_z = np.cumsum(pz,1)
crps_value = measure_crps(cdf_z, target_data)
return crps_value
|