Spaces:
Runtime error
Runtime error
File size: 7,583 Bytes
b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 b25063d 668e440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: temps
# language: python
# name: temps
# ---
# # FIGURE 5 IN THE PAPER
# ## n(z) distributions
# %load_ext autoreload
# %autoreload 2
import pandas as pd
import numpy as np
from astropy.io import fits
from astropy.table import Table
import torch
from pathlib import Path
# matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"
from temps.archive import Archive
from temps.utils import nmad
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule
from temps.plots import plot_nz
eval_methods = False
# ### LOAD DATA
# define here the directory containing the photometric catalogues
parent_dir = Path(
"/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5"
)
modules_dir = Path("../data/models/")
# +
filename_valid = "euclid_cosmos_DC2_S1_v2.1_valid_matched.fits"
hdu_list = fits.open(parent_dir / filename_valid)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat["FLAG_PHOT"] == 0]
cat = cat[cat["mu_class_L07"] == 1]
cat = cat[(cat["z_spec_S15"] > 0) | (cat["photo_z_L15"] > 0)]
cat = cat[cat["MAG_VIS"] < 25]
# -
ztarget = [
cat["z_spec_S15"].values[ii]
if cat["z_spec_S15"].values[ii] > 0
else cat["photo_z_L15"].values[ii]
for ii in range(len(cat))
]
specz_or_photo = [
0 if cat["z_spec_S15"].values[ii] > 0 else 1 for ii in range(len(cat))
]
ID = cat["ID"]
VISmag = cat["MAG_VIS"]
zsflag = cat["reliable_S15"]
photoz_archive = Archive(path=parent_dir, only_zspec=False)
f, ferr = photoz_archive._extract_fluxes(catalogue=cat)
col, colerr = photoz_archive._to_colors(f, ferr)
# ### LOAD TRAINED MODELS AND EVALUATE PDFs AND REDSHIFT
if eval_methods:
dfs = {}
for il, lab in enumerate(["z", "L15", "DA"]):
nn_features = EncoderPhotometry()
nn_features.load_state_dict(
torch.load(
modules_dir / f"modelF_{lab}.pt", map_location=torch.device("cpu")
)
)
nn_z = MeasureZ(num_gauss=6)
nn_z.load_state_dict(
torch.load(
modules_dir / f"modelZ_{lab}.pt", map_location=torch.device("cpu")
)
)
temps_module = TempsModule(nn_features, nn_z)
z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col), return_pz=True)
# Create a DataFrame with the desired columns
df = pd.DataFrame(
np.c_[ID, VISmag, z, odds, ztarget, zsflag, specz_or_photo],
columns=["ID", "VISmag", "z", "odds", "ztarget", "zsflag", "S15_L15_flag"],
)
# Calculate additional columns or operations if needed
df["zwerr"] = (df.z - df.ztarget) / (1 + df.ztarget)
# Drop any rows with NaN values
df = df.dropna()
# Assign the DataFrame to a key in the dictionary
dfs[lab] = df
# ### LOAD CATALOGUES IF AVAILABLE
if not eval_methods:
df_zs = pd.read_csv(parent_dir / "predictions_specztraining.csv", header=0)
df_zsL15 = pd.read_csv(parent_dir / "predictions_speczL15training.csv", header=0)
df_DA = pd.read_csv(parent_dir / "predictions_speczDAtraining.csv", header=0)
dfs = {}
dfs["z"] = df_zs
dfs["L15"] = df_zsL15
dfs["DA"] = df_DA
# +
import matplotlib.pyplot as plt
from matplotlib import gridspec
# Create figure and grid specification
fig = plt.figure(figsize=(8, 10))
gs = gridspec.GridSpec(5, 1, height_ratios=[0.1, 1, 1, 1, 1])
# Upper panel (very thin) with shaded areas
ax1 = plt.subplot(gs[0])
ax1.set_yticks([])
ax1.set_ylabel("Bins", fontsize=10)
# Define the ranges for shaded areas
# z_ranges = [[0.15, 0.35], [0.35, 0.55], [0.55, 0.85], [0.85, 1.05], [1.05, 1.35],
# [1.35, 1.55],# [1.55, 1.85], [1.85, 2], [2, 2.5], [2.5, 3], [3, 4]]
z_ranges = [[0.15, 0.5], [0.5, 1], [1, 1.5], [1.5, 2]] # , [2, 3], [3,4]]#,
# [1.35, 1.55],# [1.55, 1.85], [1.85, 2], [2, 2.5], [2.5, 3], [3, 4]]
colors = [
"deepskyblue",
"forestgreen",
"coral",
"grey",
"pink",
"goldenrod",
"cyan",
"seagreen",
"salmon",
"steelblue",
"orange",
]
# Plot shaded areas
x_values = [0, 1, 2] # Example x values, adjust as needed
for i, (start, end) in enumerate(z_ranges):
ax1.fill_betweenx(x_values, start, end, color=colors[i], alpha=0.5)
# Middle panel (equally thick)
ax2 = plt.subplot(gs[1])
for i, (start, end) in enumerate(z_ranges):
dfplot_z = dfs["z"][(dfs["z"]["ztarget"] > start) & (dfs["z"]["ztarget"] < end)]
ax2.hist(
dfplot_z.ztarget,
bins=50,
color=colors[i],
histtype="step",
linestyle="-",
density=True,
range=(0, 4),
)
# Bottom panel (equally thick)
ax3 = plt.subplot(gs[2])
for i, (start, end) in enumerate(z_ranges):
dfplot_z = dfs["z"][(dfs["z"]["z"] > start) & (dfs["z"]["z"] < end)]
ax3.hist(
dfplot_z.ztarget,
bins=50,
color=colors[i],
histtype="step",
linestyle="-",
density=True,
range=(0, 4),
)
# Bottom panel (equally thick)
ax4 = plt.subplot(gs[3])
for i, (start, end) in enumerate(z_ranges):
dfplot_z = dfs["L15"][(dfs["L15"]["z"] > start) & (dfs["L15"]["z"] < end)]
print(len(dfplot_z))
ax4.hist(
dfplot_z.ztarget,
bins=50,
color=colors[i],
histtype="step",
linestyle="-",
density=True,
range=(0, 4),
)
ax5 = plt.subplot(gs[4])
for i, (start, end) in enumerate(z_ranges):
dfplot_z = dfs["DA"][(dfs["DA"]["z"] > start) & (dfs["DA"]["z"] < end)]
ax5.hist(
dfplot_z.ztarget,
bins=50,
color=colors[i],
histtype="step",
linestyle="-",
density=True,
range=(0, 4),
)
plt.tight_layout()
plt.show()
# -
def plot_nz(df_list, zcuts=[0.1, 0.5, 1, 1.5, 2, 3, 4], save=False):
# Plot properties
plt.rcParams["font.family"] = "serif"
plt.rcParams["font.size"] = 16
cmap = plt.get_cmap("Dark2") # Choose a colormap for coloring lines
# Create subplots
fig, axs = plt.subplots(3, 1, figsize=(20, 8), sharex=True)
for i, df in enumerate(df_list):
dfplot = df_list[i].copy() # Assuming df_list contains dataframes
ax = axs[i] # Selecting the appropriate subplot
for iz in range(len(zcuts) - 1):
dfplot_z = dfplot[
(dfplot["ztarget"] > zcuts[iz]) & (dfplot["ztarget"] < zcuts[iz + 1])
]
color = cmap(iz) # Get a different color for each redshift
zt_mean = np.median(dfplot_z.ztarget.values)
zp_mean = np.median(dfplot_z.z.values)
# Plot histogram on the selected subplot
ax.hist(
dfplot_z.z,
bins=50,
color=color,
histtype="step",
linestyle="-",
density=True,
range=(0, 4),
)
ax.axvline(zt_mean, color=color, linestyle="-", lw=2)
ax.axvline(zp_mean, color=color, linestyle="--", lw=2)
ax.set_ylabel(f"Frequency", fontsize=14)
ax.grid(False)
ax.set_xlim(0, 3.5)
axs[-1].set_xlabel(f"$z$", fontsize=18)
if save:
plt.savefig(f"nz_hist.pdf", dpi=300, bbox_inches="tight")
plt.show()
plot_nz(df_list)
|