Spaces:
Runtime error
Runtime error
File size: 7,330 Bytes
b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 b25063d 11f8c36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: temps
# language: python
# name: temps
# ---
# # DOMAIN ADAPTATION INTUITION
# %load_ext autoreload
# %autoreload 2
import pandas as pd
import numpy as np
import os
from astropy.io import fits
from astropy.table import Table
import torch
from pathlib import Path
import seaborn as sns
#matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"
from temps.archive import Archive
from temps.utils import nmad
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule
# ## LOAD DATA
#define here the directory containing the photometric catalogues
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5')
modules_dir = Path('../data/models/')
filename_calib = 'euclid_cosmos_DC2_S1_v2.1_calib_clean.fits'
filename_valid = 'euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'
# +
hdu_list = fits.open(parent_dir/filename_valid)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat['FLAG_PHOT']==0]
cat = cat[cat['mu_class_L07']==1]
cat['SNR_VIS'] = cat.FLUX_VIS / cat.FLUXERR_VIS
#cat = cat[cat.SNR_VIS>10]
# -
ztarget = [cat['z_spec_S15'].values[ii] if cat['z_spec_S15'].values[ii]> 0 else cat['photo_z_L15'].values[ii] for ii in range(len(cat))]
specz_or_photo = [0 if cat['z_spec_S15'].values[ii]> 0 else 1 for ii in range(len(cat))]
ID = cat['ID']
VISmag = cat['MAG_VIS']
zsflag = cat['reliable_S15']
cat['ztarget']=ztarget
cat['specz_or_photo']=specz_or_photo
# ### EXTRACT PHOTOMETRY
photoz_archive = Archive(path_calib = parent_dir/filename_calib,
path_valid = parent_dir/filename_valid,
only_zspec=False)
f = photoz_archive._extract_fluxes(catalogue= cat)
col = photoz_archive._to_colors(f)
# ### MEASURE FEATURES
features_all = np.zeros((3,len(cat),10))
for il, lab in enumerate(['z','L15','DA']):
nn_features = EncoderPhotometry()
nn_features.load_state_dict(torch.load(modules_dir/f'modelF_{lab}.pt',map_location=torch.device('cpu')))
features = nn_features(torch.Tensor(col))
features = features.detach().cpu().numpy()
features_all[il]=features
# ### TRAIN AUTOENCODER TO REDUCE TO 2 DIMENSIONS
import torch
from torch import nn
class Autoencoder(nn.Module):
def __init__(self, input_dim, latent_dim):
super(Autoencoder, self).__init__()
# Encoder layers
self.encoder = nn.Sequential(
nn.Linear(input_dim, 100),
nn.ReLU(),
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, latent_dim)
)
# Decoder layers
self.decoder = nn.Sequential(
nn.Linear(latent_dim, 50),
nn.ReLU(),
nn.Linear(50, 100),
nn.ReLU(),
nn.Linear(100, input_dim),
)
def forward(self, x):
x = self.encoder(x)
y = self.decoder(x)
return y,x
# +
from torch.utils.data import DataLoader, dataset, TensorDataset
ds =TensorDataset(torch.Tensor(features_all[0]))
train_loader = DataLoader(ds, batch_size=100, shuffle=True, drop_last=False)
# -
import torch.optim as optim
autoencoder = Autoencoder(input_dim=10,
latent_dim=2)
criterion = nn.L1Loss()
optimizer = optim.Adam(autoencoder.parameters(), lr=0.0001)
# +
# Define the number of epochs
num_epochs = 100
for epoch in range(num_epochs):
running_loss = 0.0
for data in train_loader: # Assuming 'train_loader' is your DataLoader
# Forward pass
outputs,f1 = autoencoder(data[0])
loss_autoencoder = criterion(outputs, data[0])
optimizer.zero_grad()
# Backward pass
loss_autoencoder.backward()
# Update the weights
optimizer.step()
# Accumulate the loss
running_loss += loss_autoencoder.item()
# Print the average loss for the epoch
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, running_loss / len(train_loader)))
print('Training finished')
# -
# #### EVALUTATE AUTOENCODER
# cat.to_csv('features_cat.csv', header=True, sep=',')
indexes_specz = cat[(cat.specz_or_photo==0)&(cat.reliable_S15>0)].reset_index().index
features_all_reduced = np.zeros(shape=(3,len(cat),2))
for i in range(3):
_, features = autoencoder(torch.Tensor(features_all[i]))
features_all_reduced[i] = features.detach().cpu().numpy()
# ### Plot the features
start = 0
end = len(cat)
all_values = set(range(start, end))
values_not_in_indexes_specz = all_values - set(indexes_specz)
indexes_nospecz = sorted(values_not_in_indexes_specz)
# +
# Create subplots with three panels
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
# Set style for all subplots
sns.set_style("white")
# First subplot
sns.kdeplot(x=features_all_reduced[0, indexes_nospecz,0],
y=features_all_reduced[0, indexes_nospecz,1],
clip=(-150, 150),
ax=axs[0],
color='salmon')
sns.kdeplot(x=features_all_reduced[0, indexes_specz,0],
y=features_all_reduced[0, indexes_specz,1],
clip=(-150, 150),
ax=axs[0],
color='lightskyblue')
axs[0].set_xlim(-150, 150)
axs[0].set_ylim(-150, 150)
axs[0].set_title(r'Trained on $z_{\rm s}$')
# Second subplot
sns.kdeplot(x=features_all_reduced[1, indexes_nospecz, 0],
y=features_all_reduced[1, indexes_nospecz, 1],
clip=(-50, 50),
ax=axs[1],
color='salmon')
sns.kdeplot(x=features_all_reduced[1, indexes_specz, 0],
y=features_all_reduced[1, indexes_specz,1],
clip=(-50, 50),
ax=axs[1],
color='lightskyblue')
axs[1].set_xlim(-50, 50)
axs[1].set_ylim(-50, 50)
axs[1].set_title('Trained on L15')
# Third subplot
features_all_reduced_nospecz = pd.DataFrame(features_all_reduced[2, indexes_nospecz, :]).drop_duplicates().values
sns.kdeplot(x=features_all_reduced[2, indexes_nospecz, 0],
y=features_all_reduced[2, indexes_nospecz, 1],
clip=(-1, 5),
ax=axs[2],
color='salmon',
label='Wide-field sample')
sns.kdeplot(x=features_all_reduced[2, indexes_specz, 0],
y=features_all_reduced[2, indexes_specz,1],
clip=(-1, 5),
ax=axs[2],
color='lightskyblue',
label=r'$z_{\rm s}$ sample')
axs[2].set_xlim(-2, 5)
axs[2].set_ylim(-2, 5)
axs[2].set_title('TEMPS')
axs[0].set_xlabel('Feature 1')
axs[1].set_xlabel('Feature 1')
axs[2].set_xlabel('Feature 1')
axs[0].set_ylabel('Feature 2')
# Create custom legend with desired colors
legend_labels = ['Wide-field sample', r'$z_{\rm s}$ sample']
legend_handles = [plt.Line2D([0], [0], color='salmon', lw=2),
plt.Line2D([0], [0], color='lightskyblue', lw=2)]
axs[2].legend(legend_handles, legend_labels, loc='upper right', fontsize=16)
# Adjust layout
plt.tight_layout()
#plt.savefig('Contourplot.pdf', bbox_inches='tight')
plt.show()
# -
|