TEMPS / notebooks /Table_metrics.py
Laura Cabayol Garcia
running precommit
668e440
raw
history blame
3.57 kB
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: temps
# language: python
# name: temps
# ---
# # TABLE METRICS
# %load_ext autoreload
# %autoreload 2
import pandas as pd
import numpy as np
import os
import torch
from scipy import stats
from astropy.io import fits
from astropy.table import Table
from pathlib import Path
# matplotlib settings
from matplotlib import rcParams
import matplotlib.pyplot as plt
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"
from temps.archive import Archive
from temps.utils import nmad, select_cut
from temps.temps_arch import EncoderPhotometry, MeasureZ
from temps.temps import TempsModule
# ## LOAD DATA
# define here the directory containing the photometric catalogues
parent_dir = Path(
"/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5"
)
modules_dir = Path("../data/models/")
# +
filename_valid = "euclid_cosmos_DC2_S1_v2.1_valid_matched.fits"
hdu_list = fits.open(parent_dir / filename_valid)
cat = Table(hdu_list[1].data).to_pandas()
cat = cat[cat["FLAG_PHOT"] == 0]
cat = cat[cat["mu_class_L07"] == 1]
cat["SNR_VIS"] = cat.FLUX_VIS / cat.FLUXERR_VIS
# -
cat = cat[cat.SNR_VIS > 10]
ztarget = [
cat["z_spec_S15"].values[ii]
if cat["z_spec_S15"].values[ii] > 0
else cat["photo_z_L15"].values[ii]
for ii in range(len(cat))
]
specz_or_photo = [
0 if cat["z_spec_S15"].values[ii] > 0 else 1 for ii in range(len(cat))
]
ID = cat["ID"]
VISmag = cat["MAG_VIS"]
zsflag = cat["reliable_S15"]
cat["ztarget"] = ztarget
cat["specz_or_photo"] = specz_or_photo
cat = cat[cat.ztarget > 0]
# ### EXTRACT PHOTOMETRY
photoz_archive = Archive(path=parent_dir, only_zspec=False)
f, ferr = photoz_archive._extract_fluxes(catalogue=cat)
col, colerr = photoz_archive._to_colors(f, ferr)
# ### MEASURE CATALOGUE
# +
# Initialize an empty dictionary to store DataFrames
lab = "DA"
nn_features = EncoderPhotometry()
nn_features.load_state_dict(
torch.load(modules_dir / f"modelF_{lab}.pt", map_location=torch.device("cpu"))
)
nn_z = MeasureZ(num_gauss=6)
nn_z.load_state_dict(
torch.load(modules_dir / f"modelZ_{lab}.pt", map_location=torch.device("cpu"))
)
temps_module = TempsModule(nn_features, nn_z)
z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col), return_pz=True)
# Create a DataFrame with the desired columns
df = pd.DataFrame(
np.c_[z, odds, cat.ztarget, cat.reliable_S15, cat.specz_or_photo],
columns=["z", "odds", "ztarget", "reliable_S15", "specz_or_photo"],
)
# Calculate additional columns or operations if needed
df["zwerr"] = (df.z - df.ztarget) / (1 + df.ztarget)
# Drop any rows with NaN values
df = df.dropna()
# -
# ### SPECZ SAMPLE
df_specz = df[(df.reliable_S15 == 1) & (df.specz_or_photo == 0)]
# +
df_selected, cut, dfcuts = select_cut(
df_specz, completenss_lim=None, nmad_lim=0.055, outliers_lim=None, return_df=True
)
# -
print(
dfcuts.to_latex(
float_format="%.3f",
columns=["Nobj", "completeness", "nmad", "eta"],
index=False,
)
)
# ### EUCLID SAMPLE
df_euclid = df[(df.z > 0.2) & (df.z < 2.6)]
df_euclid
# +
df_selected, cut, dfcuts = select_cut(
df_euclid, completenss_lim=None, nmad_lim=0.05, outliers_lim=None, return_df=True
)
# -
print(
dfcuts.to_latex(
float_format="%.3f",
columns=["Nobj", "completeness", "nmad", "eta"],
index=False,
)
)