Laura Cabayol Garcia commited on
Commit
14f20e4
Β·
1 Parent(s): 37eb1ba

modify readme and app for HF

Browse files
Files changed (2) hide show
  1. README.md +8 -1
  2. app.py +4 -5
README.md CHANGED
@@ -1,12 +1,19 @@
 
1
  ---
2
  title: Photo-z predictor
3
  emoji: 🌌
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: docker
7
- python_version: 3.10
8
  pinned: false
9
  ---
 
 
 
 
 
 
10
 
11
  This repository contains a neural network to predict photometric redshifts. The neural network incorporates domain adaptation, a methodology to mitigate the impact of sample bias in the spectroscopic training samples.
12
 
 
1
+ <!--
2
  ---
3
  title: Photo-z predictor
4
  emoji: 🌌
5
  colorFrom: blue
6
  colorTo: red
7
  sdk: docker
8
+ python_version: 3.11
9
  pinned: false
10
  ---
11
+ -->
12
+
13
+ [![Python application](https://img.shields.io/badge/python_application-passing-success)](https://github.com/lauracabayol/TEMPS/actions)
14
+ [![Pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit)](https://github.com/pre-commit/pre-commit)
15
+ [![Hugging Face Spaces](https://img.shields.io/badge/πŸ€—_Spaces-deployed-blue)](https://huggingface.co/spaces/lauracabayol/TEMPS)
16
+ [![Mkdocs](https://img.shields.io/badge/mkdocs-passing-success)](https://github.com/lauracabayol/TEMPS/actions)
17
 
18
  This repository contains a neural network to predict photometric redshifts. The neural network incorporates domain adaptation, a methodology to mitigate the impact of sample bias in the spectroscopic training samples.
19
 
app.py CHANGED
@@ -1,15 +1,12 @@
1
  from __future__ import annotations
2
  import argparse
3
  import logging
4
- import sys
5
  from pathlib import Path
6
 
7
  import gradio as gr
8
  import pandas as pd
9
  import torch
10
- from huggingface_hub import snapshot_download
11
 
12
- from temps.archive import Archive
13
  from temps.temps_arch import EncoderPhotometry, MeasureZ
14
  from temps.temps import TempsModule
15
 
@@ -17,7 +14,7 @@ logger = logging.getLogger(__name__)
17
 
18
  # Define the prediction function that will be called by Gradio
19
  def predict(input_file_path: Path):
20
- model_path = Path("app/models/")
21
 
22
  logger.info("Loading data and converting fluxes to colors")
23
 
@@ -107,4 +104,6 @@ interface = gr.Interface(
107
  )
108
 
109
  if __name__ == "__main__":
110
- interface.launch(server_name="0.0.0.0", server_port=7860, share=True)
 
 
 
1
  from __future__ import annotations
2
  import argparse
3
  import logging
 
4
  from pathlib import Path
5
 
6
  import gradio as gr
7
  import pandas as pd
8
  import torch
 
9
 
 
10
  from temps.temps_arch import EncoderPhotometry, MeasureZ
11
  from temps.temps import TempsModule
12
 
 
14
 
15
  # Define the prediction function that will be called by Gradio
16
  def predict(input_file_path: Path):
17
+ model_path = Path("models/")
18
 
19
  logger.info("Loading data and converting fluxes to colors")
20
 
 
104
  )
105
 
106
  if __name__ == "__main__":
107
+ args = get_args()
108
+ logging.basicConfig(level=args.log_level)
109
+ interface.launch(server_name=args.server_address, server_port=args.port, share=True)