Spaces:
Runtime error
Runtime error
Commit
·
696a020
1
Parent(s):
c212435
optimized version working at low z
Browse files- insight/.ipynb_checkpoints/archive-checkpoint.py +15 -21
- insight/.ipynb_checkpoints/insight-checkpoint.py +33 -25
- insight/.ipynb_checkpoints/insight_arch-checkpoint.py +10 -37
- insight/.ipynb_checkpoints/utils-checkpoint.py +22 -11
- insight/__pycache__/archive.cpython-310.pyc +0 -0
- insight/__pycache__/archive.cpython-39.pyc +0 -0
- insight/__pycache__/insight.cpython-310.pyc +0 -0
- insight/__pycache__/insight.cpython-39.pyc +0 -0
- insight/__pycache__/insight_arch.cpython-310.pyc +0 -0
- insight/__pycache__/insight_arch.cpython-39.pyc +0 -0
- insight/__pycache__/utils.cpython-310.pyc +0 -0
- insight/__pycache__/utils.cpython-39.pyc +0 -0
- insight/archive.py +15 -21
- insight/insight.py +33 -25
- insight/insight_arch.py +10 -37
- insight/utils.py +41 -12
insight/.ipynb_checkpoints/archive-checkpoint.py
CHANGED
@@ -13,7 +13,7 @@ rcParams["font.family"] = "STIXGeneral"
|
|
13 |
|
14 |
|
15 |
class archive():
|
16 |
-
def __init__(self, path, aperture=2, drop_stars=True, clean_photometry=True, convert_colors=True, extinction_corr=True, only_zspec=True,
|
17 |
|
18 |
self.aperture = aperture
|
19 |
|
@@ -39,30 +39,28 @@ class archive():
|
|
39 |
hdu_list = fits.open(os.path.join(path,filename_valid))
|
40 |
cat_test = Table(hdu_list[1].data).to_pandas()
|
41 |
|
|
|
|
|
|
|
42 |
gold_sample = pd.read_csv(os.path.join(path,filename_gold))
|
43 |
|
44 |
#cat_test = self._match_gold_sample(cat_test,gold_sample)
|
45 |
|
46 |
if drop_stars==True:
|
47 |
cat = cat[cat.mu_class_L07==1]
|
|
|
48 |
|
49 |
if clean_photometry==True:
|
50 |
cat = self._clean_photometry(cat)
|
51 |
cat_test = self._clean_photometry(cat_test)
|
52 |
|
53 |
-
self._get_loss_weights(cat)
|
54 |
|
55 |
cat = cat[cat.w_Q_f_S15>0]
|
56 |
-
|
57 |
-
self._set_training_data(cat, only_zspec=only_zspec,
|
58 |
-
|
59 |
-
|
60 |
-
self._set_testing_data(cat_test, only_zspec=only_zspec, reliable_zspec='Total', extinction_corr=extinction_corr, convert_colors=convert_colors)
|
61 |
|
62 |
self._get_loss_weights(cat)
|
63 |
-
|
64 |
-
#self.cat_test=cat_test
|
65 |
-
#self.cat_train=cat
|
66 |
|
67 |
def _extract_fluxes(self,catalogue):
|
68 |
columns_f = [f'FLUX_{x}_{self.aperture}' for x in ['G','R','I','Z','Y','J','H']]
|
@@ -100,13 +98,9 @@ class archive():
|
|
100 |
catalogue = catalogue[catalogue.z_spec_S15>0]
|
101 |
return catalogue
|
102 |
|
103 |
-
def _clean_zspec_sample(self,catalogue ,
|
104 |
-
|
105 |
-
|
106 |
-
elif kind=='Total':
|
107 |
-
return catalogue[catalogue['reliable_S15']>0]
|
108 |
-
elif kind=='Partial':
|
109 |
-
return catalogue[(catalogue['w_Q_f_S15']>0.5)]
|
110 |
|
111 |
def _map_weight(self,Qz):
|
112 |
for key, value in self.weight_dict.items():
|
@@ -134,11 +128,11 @@ class archive():
|
|
134 |
return catalogue_valid
|
135 |
|
136 |
|
137 |
-
def _set_training_data(self,catalogue, only_zspec=True,
|
138 |
|
139 |
if only_zspec:
|
140 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Calib')
|
141 |
-
catalogue = self._clean_zspec_sample(catalogue,
|
142 |
|
143 |
self.cat_train=catalogue
|
144 |
f, ferr = self._extract_fluxes(catalogue)
|
@@ -159,11 +153,11 @@ class archive():
|
|
159 |
self.target_z_train = catalogue['z_spec_S15'].values
|
160 |
self.target_qz_train = catalogue['w_Q_f_S15'].values
|
161 |
|
162 |
-
def _set_testing_data(self,catalogue, only_zspec=True,
|
163 |
|
164 |
if only_zspec:
|
165 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Valid')
|
166 |
-
catalogue = self._clean_zspec_sample(catalogue,
|
167 |
|
168 |
self.cat_test=catalogue
|
169 |
|
|
|
13 |
|
14 |
|
15 |
class archive():
|
16 |
+
def __init__(self, path, aperture=2, drop_stars=True, clean_photometry=True, convert_colors=True, extinction_corr=True, only_zspec=True, Qz_cut=1):
|
17 |
|
18 |
self.aperture = aperture
|
19 |
|
|
|
39 |
hdu_list = fits.open(os.path.join(path,filename_valid))
|
40 |
cat_test = Table(hdu_list[1].data).to_pandas()
|
41 |
|
42 |
+
self._get_loss_weights(cat)
|
43 |
+
self._get_loss_weights(cat_test)
|
44 |
+
|
45 |
gold_sample = pd.read_csv(os.path.join(path,filename_gold))
|
46 |
|
47 |
#cat_test = self._match_gold_sample(cat_test,gold_sample)
|
48 |
|
49 |
if drop_stars==True:
|
50 |
cat = cat[cat.mu_class_L07==1]
|
51 |
+
cat_test = cat_test[cat_test.mu_class_L07==1]
|
52 |
|
53 |
if clean_photometry==True:
|
54 |
cat = self._clean_photometry(cat)
|
55 |
cat_test = self._clean_photometry(cat_test)
|
56 |
|
|
|
57 |
|
58 |
cat = cat[cat.w_Q_f_S15>0]
|
59 |
+
|
60 |
+
self._set_training_data(cat, only_zspec=only_zspec, extinction_corr=extinction_corr, convert_colors=convert_colors,Qz_cut=Qz_cut)
|
61 |
+
self._set_testing_data(cat_test, only_zspec=only_zspec, extinction_corr=extinction_corr, convert_colors=convert_colors)
|
|
|
|
|
62 |
|
63 |
self._get_loss_weights(cat)
|
|
|
|
|
|
|
64 |
|
65 |
def _extract_fluxes(self,catalogue):
|
66 |
columns_f = [f'FLUX_{x}_{self.aperture}' for x in ['G','R','I','Z','Y','J','H']]
|
|
|
98 |
catalogue = catalogue[catalogue.z_spec_S15>0]
|
99 |
return catalogue
|
100 |
|
101 |
+
def _clean_zspec_sample(self,catalogue ,Qz_cut):
|
102 |
+
catalogue = catalogue[catalogue.w_Q_f_S15>=Qz_cut]
|
103 |
+
return catalogue
|
|
|
|
|
|
|
|
|
104 |
|
105 |
def _map_weight(self,Qz):
|
106 |
for key, value in self.weight_dict.items():
|
|
|
128 |
return catalogue_valid
|
129 |
|
130 |
|
131 |
+
def _set_training_data(self,catalogue, only_zspec=True, extinction_corr=True, convert_colors=True,Qz_cut=1):
|
132 |
|
133 |
if only_zspec:
|
134 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Calib')
|
135 |
+
catalogue = self._clean_zspec_sample(catalogue, Qz_cut=Qz_cut)
|
136 |
|
137 |
self.cat_train=catalogue
|
138 |
f, ferr = self._extract_fluxes(catalogue)
|
|
|
153 |
self.target_z_train = catalogue['z_spec_S15'].values
|
154 |
self.target_qz_train = catalogue['w_Q_f_S15'].values
|
155 |
|
156 |
+
def _set_testing_data(self,catalogue, only_zspec=True, extinction_corr=True, convert_colors=True):
|
157 |
|
158 |
if only_zspec:
|
159 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Valid')
|
160 |
+
catalogue = self._clean_zspec_sample(catalogue, Qz_cut=1)
|
161 |
|
162 |
self.cat_test=catalogue
|
163 |
|
insight/.ipynb_checkpoints/insight-checkpoint.py
CHANGED
@@ -8,34 +8,37 @@ from astropy.io import fits
|
|
8 |
import os
|
9 |
from astropy.table import Table
|
10 |
from scipy.spatial import KDTree
|
|
|
11 |
|
12 |
class Insight_module():
|
13 |
""" Define class"""
|
14 |
|
15 |
-
def __init__(self, model):
|
16 |
self.model=model
|
17 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
18 |
|
19 |
-
def _get_dataloaders(self, input_data, target_data,
|
20 |
input_data = torch.Tensor(input_data)
|
21 |
target_data = torch.Tensor(target_data)
|
22 |
-
target_weights = torch.Tensor(target_weights)
|
23 |
|
24 |
-
dataset = TensorDataset(input_data, target_data
|
25 |
|
26 |
trainig_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(len(dataset)*(1-val_fraction)), int(len(dataset)*val_fraction)+1])
|
27 |
-
loader_train = DataLoader(trainig_dataset, batch_size=
|
28 |
loader_val = DataLoader(val_dataset, batch_size=64, shuffle = True)
|
29 |
|
30 |
return loader_train, loader_val
|
31 |
|
|
|
32 |
|
33 |
-
def _loss_function(self,mean, std, logmix, true, target_weights):
|
34 |
-
log_prob = logmix - 0.5*(mean - true[:,None]).pow(2) / std.pow(2) - torch.log(std)
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
loss = -log_prob.mean()
|
40 |
|
41 |
return loss
|
@@ -43,21 +46,25 @@ class Insight_module():
|
|
43 |
def _to_numpy(self,x):
|
44 |
return x.detach().cpu().numpy()
|
45 |
|
46 |
-
def train(self,input_data, target_data,
|
47 |
self.model = self.model.train()
|
48 |
-
loader_train, loader_val = self._get_dataloaders(input_data, target_data,
|
49 |
optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay=1e-4)
|
|
|
|
|
50 |
|
51 |
self.model = self.model.to(self.device)
|
52 |
|
53 |
-
loss_train, loss_validation = [],[]
|
|
|
|
|
54 |
|
55 |
for epoch in range(nepochs):
|
56 |
-
for input_data, target_data
|
|
|
57 |
|
58 |
input_data = input_data.to(self.device)
|
59 |
target_data = target_data.to(self.device)
|
60 |
-
target_weights = target_weights.to(self.device)
|
61 |
|
62 |
|
63 |
optimizer.zero_grad()
|
@@ -69,32 +76,33 @@ class Insight_module():
|
|
69 |
|
70 |
#print(mu,sig,target_data,torch.exp(logmix_coeff))
|
71 |
|
72 |
-
loss = self._loss_function(mu, sig, logmix_coeff, target_data
|
|
|
73 |
|
74 |
loss.backward()
|
75 |
-
optimizer.step()
|
|
|
|
|
76 |
|
77 |
-
loss_train.append(
|
78 |
|
79 |
-
for input_data, target_data
|
80 |
|
81 |
|
82 |
input_data = input_data.to(self.device)
|
83 |
target_data = target_data.to(self.device)
|
84 |
-
target_weights = target_weights.to(self.device)
|
85 |
|
86 |
|
87 |
mu, logsig, logmix_coeff = self.model(input_data)
|
88 |
logsig = torch.clamp(logsig,-6,2)
|
89 |
sig = torch.exp(logsig)
|
90 |
|
91 |
-
loss_val = self._loss_function(mu, sig, logmix_coeff, target_data
|
92 |
-
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
self.loss_validation=loss_validation
|
98 |
|
99 |
|
100 |
def get_photoz(self,input_data, target_data):
|
|
|
8 |
import os
|
9 |
from astropy.table import Table
|
10 |
from scipy.spatial import KDTree
|
11 |
+
from scipy.special import erf
|
12 |
|
13 |
class Insight_module():
|
14 |
""" Define class"""
|
15 |
|
16 |
+
def __init__(self, model, batch_size):
|
17 |
self.model=model
|
18 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
+
self.batch_size=batch_size
|
20 |
|
21 |
+
def _get_dataloaders(self, input_data, target_data, val_fraction=0.1):
|
22 |
input_data = torch.Tensor(input_data)
|
23 |
target_data = torch.Tensor(target_data)
|
|
|
24 |
|
25 |
+
dataset = TensorDataset(input_data, target_data)
|
26 |
|
27 |
trainig_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(len(dataset)*(1-val_fraction)), int(len(dataset)*val_fraction)+1])
|
28 |
+
loader_train = DataLoader(trainig_dataset, batch_size=self.batch_size, shuffle = True)
|
29 |
loader_val = DataLoader(val_dataset, batch_size=64, shuffle = True)
|
30 |
|
31 |
return loader_train, loader_val
|
32 |
|
33 |
+
|
34 |
|
|
|
|
|
35 |
|
36 |
+
def _loss_function(self,mean, std, logmix, true):
|
37 |
+
|
38 |
+
logerf = torch.log(erf(true.cpu()[:,None]/(np.sqrt(2)*std.detach().cpu())+1))
|
39 |
|
40 |
+
log_prob = logmix - 0.5*(mean - true[:,None]).pow(2) / std.pow(2) - torch.log(std) #- logerf.to(self.device)
|
41 |
+
log_prob = torch.logsumexp(log_prob, 1)
|
42 |
loss = -log_prob.mean()
|
43 |
|
44 |
return loss
|
|
|
46 |
def _to_numpy(self,x):
|
47 |
return x.detach().cpu().numpy()
|
48 |
|
49 |
+
def train(self,input_data, target_data, nepochs=10, step_size = 100, val_fraction=0.1, lr=1e-3 ):
|
50 |
self.model = self.model.train()
|
51 |
+
loader_train, loader_val = self._get_dataloaders(input_data, target_data, val_fraction=0.1)
|
52 |
optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay=1e-4)
|
53 |
+
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma =0.1)
|
54 |
+
|
55 |
|
56 |
self.model = self.model.to(self.device)
|
57 |
|
58 |
+
self.loss_train, self.loss_validation = [],[]
|
59 |
+
|
60 |
+
|
61 |
|
62 |
for epoch in range(nepochs):
|
63 |
+
for input_data, target_data in loader_train:
|
64 |
+
_loss_train, _loss_validation = [],[]
|
65 |
|
66 |
input_data = input_data.to(self.device)
|
67 |
target_data = target_data.to(self.device)
|
|
|
68 |
|
69 |
|
70 |
optimizer.zero_grad()
|
|
|
76 |
|
77 |
#print(mu,sig,target_data,torch.exp(logmix_coeff))
|
78 |
|
79 |
+
loss = self._loss_function(mu, sig, logmix_coeff, target_data)
|
80 |
+
_loss_train.append(loss.item())
|
81 |
|
82 |
loss.backward()
|
83 |
+
optimizer.step()
|
84 |
+
|
85 |
+
scheduler.step()
|
86 |
|
87 |
+
self.loss_train.append(np.mean(_loss_train))
|
88 |
|
89 |
+
for input_data, target_data in loader_val:
|
90 |
|
91 |
|
92 |
input_data = input_data.to(self.device)
|
93 |
target_data = target_data.to(self.device)
|
|
|
94 |
|
95 |
|
96 |
mu, logsig, logmix_coeff = self.model(input_data)
|
97 |
logsig = torch.clamp(logsig,-6,2)
|
98 |
sig = torch.exp(logsig)
|
99 |
|
100 |
+
loss_val = self._loss_function(mu, sig, logmix_coeff, target_data)
|
101 |
+
_loss_validation.append(loss_val.item())
|
102 |
|
103 |
+
self.loss_validation.append(np.mean(_loss_validation))
|
104 |
+
|
105 |
+
#print(f'training_loss:{loss}',f'testing_loss:{loss_val}')
|
|
|
106 |
|
107 |
|
108 |
def get_photoz(self,input_data, target_data):
|
insight/.ipynb_checkpoints/insight_arch-checkpoint.py
CHANGED
@@ -8,64 +8,37 @@ class Photoz_network(nn.Module):
|
|
8 |
nn.Linear(6, 10),
|
9 |
nn.Dropout(dropout_prob),
|
10 |
nn.ReLU(),
|
11 |
-
nn.Linear(10,
|
12 |
nn.Dropout(dropout_prob),
|
13 |
nn.ReLU(),
|
14 |
-
nn.Linear(
|
15 |
nn.Dropout(dropout_prob),
|
16 |
nn.ReLU(),
|
17 |
-
nn.Linear(50,
|
18 |
nn.Dropout(dropout_prob),
|
19 |
nn.ReLU(),
|
20 |
-
nn.Linear(
|
21 |
)
|
22 |
|
23 |
self.measure_mu = nn.Sequential(
|
24 |
-
nn.Linear(
|
25 |
nn.Dropout(dropout_prob),
|
26 |
nn.ReLU(),
|
27 |
-
nn.Linear(
|
28 |
-
nn.Dropout(dropout_prob),
|
29 |
-
nn.ReLU(),
|
30 |
-
nn.Linear(70, 60),
|
31 |
-
nn.Dropout(dropout_prob),
|
32 |
-
nn.ReLU(),
|
33 |
-
nn.Linear(60, 50),
|
34 |
-
nn.Dropout(dropout_prob),
|
35 |
-
nn.ReLU(),
|
36 |
-
nn.Linear(50, num_gauss)
|
37 |
)
|
38 |
|
39 |
self.measure_coeffs = nn.Sequential(
|
40 |
-
nn.Linear(
|
41 |
-
nn.Dropout(dropout_prob),
|
42 |
-
nn.ReLU(),
|
43 |
-
nn.Linear(80, 70),
|
44 |
-
nn.Dropout(dropout_prob),
|
45 |
-
nn.ReLU(),
|
46 |
-
nn.Linear(70, 60),
|
47 |
nn.Dropout(dropout_prob),
|
48 |
nn.ReLU(),
|
49 |
-
nn.Linear(
|
50 |
-
nn.Dropout(dropout_prob),
|
51 |
-
nn.ReLU(),
|
52 |
-
nn.Linear(50, num_gauss)
|
53 |
)
|
54 |
|
55 |
self.measure_sigma = nn.Sequential(
|
56 |
-
nn.Linear(
|
57 |
-
nn.Dropout(dropout_prob),
|
58 |
-
nn.ReLU(),
|
59 |
-
nn.Linear(80, 70),
|
60 |
-
nn.Dropout(dropout_prob),
|
61 |
-
nn.ReLU(),
|
62 |
-
nn.Linear(70, 60),
|
63 |
-
nn.Dropout(dropout_prob),
|
64 |
-
nn.ReLU(),
|
65 |
-
nn.Linear(60, 50),
|
66 |
nn.Dropout(dropout_prob),
|
67 |
nn.ReLU(),
|
68 |
-
nn.Linear(
|
69 |
)
|
70 |
|
71 |
def forward(self, x):
|
|
|
8 |
nn.Linear(6, 10),
|
9 |
nn.Dropout(dropout_prob),
|
10 |
nn.ReLU(),
|
11 |
+
nn.Linear(10, 20),
|
12 |
nn.Dropout(dropout_prob),
|
13 |
nn.ReLU(),
|
14 |
+
nn.Linear(20, 50),
|
15 |
nn.Dropout(dropout_prob),
|
16 |
nn.ReLU(),
|
17 |
+
nn.Linear(50, 20),
|
18 |
nn.Dropout(dropout_prob),
|
19 |
nn.ReLU(),
|
20 |
+
nn.Linear(20, 10)
|
21 |
)
|
22 |
|
23 |
self.measure_mu = nn.Sequential(
|
24 |
+
nn.Linear(10, 20),
|
25 |
nn.Dropout(dropout_prob),
|
26 |
nn.ReLU(),
|
27 |
+
nn.Linear(20, num_gauss)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
|
30 |
self.measure_coeffs = nn.Sequential(
|
31 |
+
nn.Linear(10, 20),
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
nn.Dropout(dropout_prob),
|
33 |
nn.ReLU(),
|
34 |
+
nn.Linear(20, num_gauss)
|
|
|
|
|
|
|
35 |
)
|
36 |
|
37 |
self.measure_sigma = nn.Sequential(
|
38 |
+
nn.Linear(10, 20),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
nn.Dropout(dropout_prob),
|
40 |
nn.ReLU(),
|
41 |
+
nn.Linear(20, num_gauss)
|
42 |
)
|
43 |
|
44 |
def forward(self, x):
|
insight/.ipynb_checkpoints/utils-checkpoint.py
CHANGED
@@ -9,9 +9,9 @@ def nmad(data):
|
|
9 |
def sigma68(data): return 0.5*(pd.Series(data).quantile(q = 0.84) - pd.Series(data).quantile(q = 0.16))
|
10 |
|
11 |
|
12 |
-
def
|
13 |
bin_edges = stats.mstats.mquantiles(df[xvariable].values, np.linspace(0.1,1,nbins))
|
14 |
-
ydata,
|
15 |
|
16 |
|
17 |
for k in range(len(bin_edges)-1):
|
@@ -21,26 +21,37 @@ def plot_photoz(df, nbins,xvariable,metric, type_bin='bin'):
|
|
21 |
mean_mag = (edge_max + edge_min) / 2
|
22 |
|
23 |
if type_bin=='bin':
|
24 |
-
df_plot = df_test[(df_test
|
25 |
elif type_bin=='cum':
|
26 |
-
df_plot = df_test[(df_test
|
27 |
else:
|
28 |
raise ValueError("Only type_bin=='bin' for binned and 'cum' for cumulative are supported")
|
29 |
|
30 |
|
31 |
-
|
32 |
if metric=='sig68':
|
33 |
ydata.append(sigma68(df_plot.zwerr))
|
|
|
34 |
elif metric=='bias':
|
35 |
-
ydata.append(np.
|
|
|
36 |
elif metric=='nmad':
|
37 |
ydata.append(nmad(df_plot.zwerr))
|
|
|
38 |
elif metric=='outliers':
|
39 |
-
ydata.append(len(df_plot[np.abs(df_plot.zwerr)>0.15])/len(df_plot))
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
plt.xticks(fontsize = 14)
|
46 |
plt.yticks(fontsize = 14)
|
|
|
9 |
def sigma68(data): return 0.5*(pd.Series(data).quantile(q = 0.84) - pd.Series(data).quantile(q = 0.16))
|
10 |
|
11 |
|
12 |
+
def plot_photoz_estimates(df, nbins,xvariable,metric, type_bin='bin'):
|
13 |
bin_edges = stats.mstats.mquantiles(df[xvariable].values, np.linspace(0.1,1,nbins))
|
14 |
+
ydata,xdata = [],[]
|
15 |
|
16 |
|
17 |
for k in range(len(bin_edges)-1):
|
|
|
21 |
mean_mag = (edge_max + edge_min) / 2
|
22 |
|
23 |
if type_bin=='bin':
|
24 |
+
df_plot = df_test[(df_test[xvariable] > edge_min) & (df_test[xvariable] < edge_max)]
|
25 |
elif type_bin=='cum':
|
26 |
+
df_plot = df_test[(df_test[xvariable] < edge_max)]
|
27 |
else:
|
28 |
raise ValueError("Only type_bin=='bin' for binned and 'cum' for cumulative are supported")
|
29 |
|
30 |
|
31 |
+
xdata.append(mean_mag)
|
32 |
if metric=='sig68':
|
33 |
ydata.append(sigma68(df_plot.zwerr))
|
34 |
+
ylab=r'$\sigma_{\rm NMAD} [\Delta z]$'
|
35 |
elif metric=='bias':
|
36 |
+
ydata.append(np.median(df_plot.zwerr))
|
37 |
+
ylab=r'Median $[\Delta z]$'
|
38 |
elif metric=='nmad':
|
39 |
ydata.append(nmad(df_plot.zwerr))
|
40 |
+
ylab=r'$\sigma_{\rm NMAD} [\Delta z]$'
|
41 |
elif metric=='outliers':
|
42 |
+
ydata.append(len(df_plot[np.abs(df_plot.zwerr)>0.15])/len(df_plot) *100)
|
43 |
+
ylab=r'$\eta$ [%]'
|
44 |
+
|
45 |
+
if xvariable=='VISmag':
|
46 |
+
xlab='VIS'
|
47 |
+
elif xvariable=='zs':
|
48 |
+
xlab=r'$z_{\rm spec}$'
|
49 |
+
elif xvariable=='z':
|
50 |
+
xlab=r'$z$'
|
51 |
+
|
52 |
+
plt.plot(xdata,ydata, ls = '-', marker = '.', color = 'navy',lw = 1, label = '')
|
53 |
+
plt.ylabel(f'{ylab}', fontsize = 18)
|
54 |
+
plt.xlabel(f'{xlab}', fontsize = 16)
|
55 |
|
56 |
plt.xticks(fontsize = 14)
|
57 |
plt.yticks(fontsize = 14)
|
insight/__pycache__/archive.cpython-310.pyc
CHANGED
Binary files a/insight/__pycache__/archive.cpython-310.pyc and b/insight/__pycache__/archive.cpython-310.pyc differ
|
|
insight/__pycache__/archive.cpython-39.pyc
CHANGED
Binary files a/insight/__pycache__/archive.cpython-39.pyc and b/insight/__pycache__/archive.cpython-39.pyc differ
|
|
insight/__pycache__/insight.cpython-310.pyc
CHANGED
Binary files a/insight/__pycache__/insight.cpython-310.pyc and b/insight/__pycache__/insight.cpython-310.pyc differ
|
|
insight/__pycache__/insight.cpython-39.pyc
CHANGED
Binary files a/insight/__pycache__/insight.cpython-39.pyc and b/insight/__pycache__/insight.cpython-39.pyc differ
|
|
insight/__pycache__/insight_arch.cpython-310.pyc
CHANGED
Binary files a/insight/__pycache__/insight_arch.cpython-310.pyc and b/insight/__pycache__/insight_arch.cpython-310.pyc differ
|
|
insight/__pycache__/insight_arch.cpython-39.pyc
CHANGED
Binary files a/insight/__pycache__/insight_arch.cpython-39.pyc and b/insight/__pycache__/insight_arch.cpython-39.pyc differ
|
|
insight/__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/insight/__pycache__/utils.cpython-310.pyc and b/insight/__pycache__/utils.cpython-310.pyc differ
|
|
insight/__pycache__/utils.cpython-39.pyc
CHANGED
Binary files a/insight/__pycache__/utils.cpython-39.pyc and b/insight/__pycache__/utils.cpython-39.pyc differ
|
|
insight/archive.py
CHANGED
@@ -13,7 +13,7 @@ rcParams["font.family"] = "STIXGeneral"
|
|
13 |
|
14 |
|
15 |
class archive():
|
16 |
-
def __init__(self, path, aperture=2, drop_stars=True, clean_photometry=True, convert_colors=True, extinction_corr=True, only_zspec=True,
|
17 |
|
18 |
self.aperture = aperture
|
19 |
|
@@ -39,30 +39,28 @@ class archive():
|
|
39 |
hdu_list = fits.open(os.path.join(path,filename_valid))
|
40 |
cat_test = Table(hdu_list[1].data).to_pandas()
|
41 |
|
|
|
|
|
|
|
42 |
gold_sample = pd.read_csv(os.path.join(path,filename_gold))
|
43 |
|
44 |
#cat_test = self._match_gold_sample(cat_test,gold_sample)
|
45 |
|
46 |
if drop_stars==True:
|
47 |
cat = cat[cat.mu_class_L07==1]
|
|
|
48 |
|
49 |
if clean_photometry==True:
|
50 |
cat = self._clean_photometry(cat)
|
51 |
cat_test = self._clean_photometry(cat_test)
|
52 |
|
53 |
-
self._get_loss_weights(cat)
|
54 |
|
55 |
cat = cat[cat.w_Q_f_S15>0]
|
56 |
-
|
57 |
-
self._set_training_data(cat, only_zspec=only_zspec,
|
58 |
-
|
59 |
-
|
60 |
-
self._set_testing_data(cat_test, only_zspec=only_zspec, reliable_zspec='Total', extinction_corr=extinction_corr, convert_colors=convert_colors)
|
61 |
|
62 |
self._get_loss_weights(cat)
|
63 |
-
|
64 |
-
#self.cat_test=cat_test
|
65 |
-
#self.cat_train=cat
|
66 |
|
67 |
def _extract_fluxes(self,catalogue):
|
68 |
columns_f = [f'FLUX_{x}_{self.aperture}' for x in ['G','R','I','Z','Y','J','H']]
|
@@ -100,13 +98,9 @@ class archive():
|
|
100 |
catalogue = catalogue[catalogue.z_spec_S15>0]
|
101 |
return catalogue
|
102 |
|
103 |
-
def _clean_zspec_sample(self,catalogue ,
|
104 |
-
|
105 |
-
|
106 |
-
elif kind=='Total':
|
107 |
-
return catalogue[catalogue['reliable_S15']>0]
|
108 |
-
elif kind=='Partial':
|
109 |
-
return catalogue[(catalogue['w_Q_f_S15']>0.5)]
|
110 |
|
111 |
def _map_weight(self,Qz):
|
112 |
for key, value in self.weight_dict.items():
|
@@ -134,11 +128,11 @@ class archive():
|
|
134 |
return catalogue_valid
|
135 |
|
136 |
|
137 |
-
def _set_training_data(self,catalogue, only_zspec=True,
|
138 |
|
139 |
if only_zspec:
|
140 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Calib')
|
141 |
-
catalogue = self._clean_zspec_sample(catalogue,
|
142 |
|
143 |
self.cat_train=catalogue
|
144 |
f, ferr = self._extract_fluxes(catalogue)
|
@@ -159,11 +153,11 @@ class archive():
|
|
159 |
self.target_z_train = catalogue['z_spec_S15'].values
|
160 |
self.target_qz_train = catalogue['w_Q_f_S15'].values
|
161 |
|
162 |
-
def _set_testing_data(self,catalogue, only_zspec=True,
|
163 |
|
164 |
if only_zspec:
|
165 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Valid')
|
166 |
-
catalogue = self._clean_zspec_sample(catalogue,
|
167 |
|
168 |
self.cat_test=catalogue
|
169 |
|
|
|
13 |
|
14 |
|
15 |
class archive():
|
16 |
+
def __init__(self, path, aperture=2, drop_stars=True, clean_photometry=True, convert_colors=True, extinction_corr=True, only_zspec=True, Qz_cut=1):
|
17 |
|
18 |
self.aperture = aperture
|
19 |
|
|
|
39 |
hdu_list = fits.open(os.path.join(path,filename_valid))
|
40 |
cat_test = Table(hdu_list[1].data).to_pandas()
|
41 |
|
42 |
+
self._get_loss_weights(cat)
|
43 |
+
self._get_loss_weights(cat_test)
|
44 |
+
|
45 |
gold_sample = pd.read_csv(os.path.join(path,filename_gold))
|
46 |
|
47 |
#cat_test = self._match_gold_sample(cat_test,gold_sample)
|
48 |
|
49 |
if drop_stars==True:
|
50 |
cat = cat[cat.mu_class_L07==1]
|
51 |
+
cat_test = cat_test[cat_test.mu_class_L07==1]
|
52 |
|
53 |
if clean_photometry==True:
|
54 |
cat = self._clean_photometry(cat)
|
55 |
cat_test = self._clean_photometry(cat_test)
|
56 |
|
|
|
57 |
|
58 |
cat = cat[cat.w_Q_f_S15>0]
|
59 |
+
|
60 |
+
self._set_training_data(cat, only_zspec=only_zspec, extinction_corr=extinction_corr, convert_colors=convert_colors,Qz_cut=Qz_cut)
|
61 |
+
self._set_testing_data(cat_test, only_zspec=only_zspec, extinction_corr=extinction_corr, convert_colors=convert_colors)
|
|
|
|
|
62 |
|
63 |
self._get_loss_weights(cat)
|
|
|
|
|
|
|
64 |
|
65 |
def _extract_fluxes(self,catalogue):
|
66 |
columns_f = [f'FLUX_{x}_{self.aperture}' for x in ['G','R','I','Z','Y','J','H']]
|
|
|
98 |
catalogue = catalogue[catalogue.z_spec_S15>0]
|
99 |
return catalogue
|
100 |
|
101 |
+
def _clean_zspec_sample(self,catalogue ,Qz_cut):
|
102 |
+
catalogue = catalogue[catalogue.w_Q_f_S15>=Qz_cut]
|
103 |
+
return catalogue
|
|
|
|
|
|
|
|
|
104 |
|
105 |
def _map_weight(self,Qz):
|
106 |
for key, value in self.weight_dict.items():
|
|
|
128 |
return catalogue_valid
|
129 |
|
130 |
|
131 |
+
def _set_training_data(self,catalogue, only_zspec=True, extinction_corr=True, convert_colors=True,Qz_cut=1):
|
132 |
|
133 |
if only_zspec:
|
134 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Calib')
|
135 |
+
catalogue = self._clean_zspec_sample(catalogue, Qz_cut=Qz_cut)
|
136 |
|
137 |
self.cat_train=catalogue
|
138 |
f, ferr = self._extract_fluxes(catalogue)
|
|
|
153 |
self.target_z_train = catalogue['z_spec_S15'].values
|
154 |
self.target_qz_train = catalogue['w_Q_f_S15'].values
|
155 |
|
156 |
+
def _set_testing_data(self,catalogue, only_zspec=True, extinction_corr=True, convert_colors=True):
|
157 |
|
158 |
if only_zspec:
|
159 |
catalogue = self._take_only_zspec(catalogue, cat_flag='Valid')
|
160 |
+
catalogue = self._clean_zspec_sample(catalogue, Qz_cut=1)
|
161 |
|
162 |
self.cat_test=catalogue
|
163 |
|
insight/insight.py
CHANGED
@@ -8,34 +8,37 @@ from astropy.io import fits
|
|
8 |
import os
|
9 |
from astropy.table import Table
|
10 |
from scipy.spatial import KDTree
|
|
|
11 |
|
12 |
class Insight_module():
|
13 |
""" Define class"""
|
14 |
|
15 |
-
def __init__(self, model):
|
16 |
self.model=model
|
17 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
18 |
|
19 |
-
def _get_dataloaders(self, input_data, target_data,
|
20 |
input_data = torch.Tensor(input_data)
|
21 |
target_data = torch.Tensor(target_data)
|
22 |
-
target_weights = torch.Tensor(target_weights)
|
23 |
|
24 |
-
dataset = TensorDataset(input_data, target_data
|
25 |
|
26 |
trainig_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(len(dataset)*(1-val_fraction)), int(len(dataset)*val_fraction)+1])
|
27 |
-
loader_train = DataLoader(trainig_dataset, batch_size=
|
28 |
loader_val = DataLoader(val_dataset, batch_size=64, shuffle = True)
|
29 |
|
30 |
return loader_train, loader_val
|
31 |
|
|
|
32 |
|
33 |
-
def _loss_function(self,mean, std, logmix, true, target_weights):
|
34 |
-
log_prob = logmix - 0.5*(mean - true[:,None]).pow(2) / std.pow(2) - torch.log(std)
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
loss = -log_prob.mean()
|
40 |
|
41 |
return loss
|
@@ -43,21 +46,25 @@ class Insight_module():
|
|
43 |
def _to_numpy(self,x):
|
44 |
return x.detach().cpu().numpy()
|
45 |
|
46 |
-
def train(self,input_data, target_data,
|
47 |
self.model = self.model.train()
|
48 |
-
loader_train, loader_val = self._get_dataloaders(input_data, target_data,
|
49 |
optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay=1e-4)
|
|
|
|
|
50 |
|
51 |
self.model = self.model.to(self.device)
|
52 |
|
53 |
-
loss_train, loss_validation = [],[]
|
|
|
|
|
54 |
|
55 |
for epoch in range(nepochs):
|
56 |
-
for input_data, target_data
|
|
|
57 |
|
58 |
input_data = input_data.to(self.device)
|
59 |
target_data = target_data.to(self.device)
|
60 |
-
target_weights = target_weights.to(self.device)
|
61 |
|
62 |
|
63 |
optimizer.zero_grad()
|
@@ -69,32 +76,33 @@ class Insight_module():
|
|
69 |
|
70 |
#print(mu,sig,target_data,torch.exp(logmix_coeff))
|
71 |
|
72 |
-
loss = self._loss_function(mu, sig, logmix_coeff, target_data
|
|
|
73 |
|
74 |
loss.backward()
|
75 |
-
optimizer.step()
|
|
|
|
|
76 |
|
77 |
-
loss_train.append(
|
78 |
|
79 |
-
for input_data, target_data
|
80 |
|
81 |
|
82 |
input_data = input_data.to(self.device)
|
83 |
target_data = target_data.to(self.device)
|
84 |
-
target_weights = target_weights.to(self.device)
|
85 |
|
86 |
|
87 |
mu, logsig, logmix_coeff = self.model(input_data)
|
88 |
logsig = torch.clamp(logsig,-6,2)
|
89 |
sig = torch.exp(logsig)
|
90 |
|
91 |
-
loss_val = self._loss_function(mu, sig, logmix_coeff, target_data
|
92 |
-
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
self.loss_validation=loss_validation
|
98 |
|
99 |
|
100 |
def get_photoz(self,input_data, target_data):
|
|
|
8 |
import os
|
9 |
from astropy.table import Table
|
10 |
from scipy.spatial import KDTree
|
11 |
+
from scipy.special import erf
|
12 |
|
13 |
class Insight_module():
|
14 |
""" Define class"""
|
15 |
|
16 |
+
def __init__(self, model, batch_size):
|
17 |
self.model=model
|
18 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
+
self.batch_size=batch_size
|
20 |
|
21 |
+
def _get_dataloaders(self, input_data, target_data, val_fraction=0.1):
|
22 |
input_data = torch.Tensor(input_data)
|
23 |
target_data = torch.Tensor(target_data)
|
|
|
24 |
|
25 |
+
dataset = TensorDataset(input_data, target_data)
|
26 |
|
27 |
trainig_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(len(dataset)*(1-val_fraction)), int(len(dataset)*val_fraction)+1])
|
28 |
+
loader_train = DataLoader(trainig_dataset, batch_size=self.batch_size, shuffle = True)
|
29 |
loader_val = DataLoader(val_dataset, batch_size=64, shuffle = True)
|
30 |
|
31 |
return loader_train, loader_val
|
32 |
|
33 |
+
|
34 |
|
|
|
|
|
35 |
|
36 |
+
def _loss_function(self,mean, std, logmix, true):
|
37 |
+
|
38 |
+
logerf = torch.log(erf(true.cpu()[:,None]/(np.sqrt(2)*std.detach().cpu())+1))
|
39 |
|
40 |
+
log_prob = logmix - 0.5*(mean - true[:,None]).pow(2) / std.pow(2) - torch.log(std) #- logerf.to(self.device)
|
41 |
+
log_prob = torch.logsumexp(log_prob, 1)
|
42 |
loss = -log_prob.mean()
|
43 |
|
44 |
return loss
|
|
|
46 |
def _to_numpy(self,x):
|
47 |
return x.detach().cpu().numpy()
|
48 |
|
49 |
+
def train(self,input_data, target_data, nepochs=10, step_size = 100, val_fraction=0.1, lr=1e-3 ):
|
50 |
self.model = self.model.train()
|
51 |
+
loader_train, loader_val = self._get_dataloaders(input_data, target_data, val_fraction=0.1)
|
52 |
optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay=1e-4)
|
53 |
+
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma =0.1)
|
54 |
+
|
55 |
|
56 |
self.model = self.model.to(self.device)
|
57 |
|
58 |
+
self.loss_train, self.loss_validation = [],[]
|
59 |
+
|
60 |
+
|
61 |
|
62 |
for epoch in range(nepochs):
|
63 |
+
for input_data, target_data in loader_train:
|
64 |
+
_loss_train, _loss_validation = [],[]
|
65 |
|
66 |
input_data = input_data.to(self.device)
|
67 |
target_data = target_data.to(self.device)
|
|
|
68 |
|
69 |
|
70 |
optimizer.zero_grad()
|
|
|
76 |
|
77 |
#print(mu,sig,target_data,torch.exp(logmix_coeff))
|
78 |
|
79 |
+
loss = self._loss_function(mu, sig, logmix_coeff, target_data)
|
80 |
+
_loss_train.append(loss.item())
|
81 |
|
82 |
loss.backward()
|
83 |
+
optimizer.step()
|
84 |
+
|
85 |
+
scheduler.step()
|
86 |
|
87 |
+
self.loss_train.append(np.mean(_loss_train))
|
88 |
|
89 |
+
for input_data, target_data in loader_val:
|
90 |
|
91 |
|
92 |
input_data = input_data.to(self.device)
|
93 |
target_data = target_data.to(self.device)
|
|
|
94 |
|
95 |
|
96 |
mu, logsig, logmix_coeff = self.model(input_data)
|
97 |
logsig = torch.clamp(logsig,-6,2)
|
98 |
sig = torch.exp(logsig)
|
99 |
|
100 |
+
loss_val = self._loss_function(mu, sig, logmix_coeff, target_data)
|
101 |
+
_loss_validation.append(loss_val.item())
|
102 |
|
103 |
+
self.loss_validation.append(np.mean(_loss_validation))
|
104 |
+
|
105 |
+
#print(f'training_loss:{loss}',f'testing_loss:{loss_val}')
|
|
|
106 |
|
107 |
|
108 |
def get_photoz(self,input_data, target_data):
|
insight/insight_arch.py
CHANGED
@@ -8,64 +8,37 @@ class Photoz_network(nn.Module):
|
|
8 |
nn.Linear(6, 10),
|
9 |
nn.Dropout(dropout_prob),
|
10 |
nn.ReLU(),
|
11 |
-
nn.Linear(10,
|
12 |
nn.Dropout(dropout_prob),
|
13 |
nn.ReLU(),
|
14 |
-
nn.Linear(
|
15 |
nn.Dropout(dropout_prob),
|
16 |
nn.ReLU(),
|
17 |
-
nn.Linear(50,
|
18 |
nn.Dropout(dropout_prob),
|
19 |
nn.ReLU(),
|
20 |
-
nn.Linear(
|
21 |
)
|
22 |
|
23 |
self.measure_mu = nn.Sequential(
|
24 |
-
nn.Linear(
|
25 |
nn.Dropout(dropout_prob),
|
26 |
nn.ReLU(),
|
27 |
-
nn.Linear(
|
28 |
-
nn.Dropout(dropout_prob),
|
29 |
-
nn.ReLU(),
|
30 |
-
nn.Linear(70, 60),
|
31 |
-
nn.Dropout(dropout_prob),
|
32 |
-
nn.ReLU(),
|
33 |
-
nn.Linear(60, 50),
|
34 |
-
nn.Dropout(dropout_prob),
|
35 |
-
nn.ReLU(),
|
36 |
-
nn.Linear(50, num_gauss)
|
37 |
)
|
38 |
|
39 |
self.measure_coeffs = nn.Sequential(
|
40 |
-
nn.Linear(
|
41 |
-
nn.Dropout(dropout_prob),
|
42 |
-
nn.ReLU(),
|
43 |
-
nn.Linear(80, 70),
|
44 |
-
nn.Dropout(dropout_prob),
|
45 |
-
nn.ReLU(),
|
46 |
-
nn.Linear(70, 60),
|
47 |
nn.Dropout(dropout_prob),
|
48 |
nn.ReLU(),
|
49 |
-
nn.Linear(
|
50 |
-
nn.Dropout(dropout_prob),
|
51 |
-
nn.ReLU(),
|
52 |
-
nn.Linear(50, num_gauss)
|
53 |
)
|
54 |
|
55 |
self.measure_sigma = nn.Sequential(
|
56 |
-
nn.Linear(
|
57 |
-
nn.Dropout(dropout_prob),
|
58 |
-
nn.ReLU(),
|
59 |
-
nn.Linear(80, 70),
|
60 |
-
nn.Dropout(dropout_prob),
|
61 |
-
nn.ReLU(),
|
62 |
-
nn.Linear(70, 60),
|
63 |
-
nn.Dropout(dropout_prob),
|
64 |
-
nn.ReLU(),
|
65 |
-
nn.Linear(60, 50),
|
66 |
nn.Dropout(dropout_prob),
|
67 |
nn.ReLU(),
|
68 |
-
nn.Linear(
|
69 |
)
|
70 |
|
71 |
def forward(self, x):
|
|
|
8 |
nn.Linear(6, 10),
|
9 |
nn.Dropout(dropout_prob),
|
10 |
nn.ReLU(),
|
11 |
+
nn.Linear(10, 20),
|
12 |
nn.Dropout(dropout_prob),
|
13 |
nn.ReLU(),
|
14 |
+
nn.Linear(20, 50),
|
15 |
nn.Dropout(dropout_prob),
|
16 |
nn.ReLU(),
|
17 |
+
nn.Linear(50, 20),
|
18 |
nn.Dropout(dropout_prob),
|
19 |
nn.ReLU(),
|
20 |
+
nn.Linear(20, 10)
|
21 |
)
|
22 |
|
23 |
self.measure_mu = nn.Sequential(
|
24 |
+
nn.Linear(10, 20),
|
25 |
nn.Dropout(dropout_prob),
|
26 |
nn.ReLU(),
|
27 |
+
nn.Linear(20, num_gauss)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
|
30 |
self.measure_coeffs = nn.Sequential(
|
31 |
+
nn.Linear(10, 20),
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
nn.Dropout(dropout_prob),
|
33 |
nn.ReLU(),
|
34 |
+
nn.Linear(20, num_gauss)
|
|
|
|
|
|
|
35 |
)
|
36 |
|
37 |
self.measure_sigma = nn.Sequential(
|
38 |
+
nn.Linear(10, 20),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
nn.Dropout(dropout_prob),
|
40 |
nn.ReLU(),
|
41 |
+
nn.Linear(20, num_gauss)
|
42 |
)
|
43 |
|
44 |
def forward(self, x):
|
insight/utils.py
CHANGED
@@ -8,10 +8,9 @@ def nmad(data):
|
|
8 |
|
9 |
def sigma68(data): return 0.5*(pd.Series(data).quantile(q = 0.84) - pd.Series(data).quantile(q = 0.16))
|
10 |
|
11 |
-
|
12 |
-
def plot_photoz(df, nbins,xvariable,metric, type_bin='bin'):
|
13 |
bin_edges = stats.mstats.mquantiles(df[xvariable].values, np.linspace(0.1,1,nbins))
|
14 |
-
ydata,
|
15 |
|
16 |
|
17 |
for k in range(len(bin_edges)-1):
|
@@ -21,26 +20,37 @@ def plot_photoz(df, nbins,xvariable,metric, type_bin='bin'):
|
|
21 |
mean_mag = (edge_max + edge_min) / 2
|
22 |
|
23 |
if type_bin=='bin':
|
24 |
-
df_plot =
|
25 |
elif type_bin=='cum':
|
26 |
-
df_plot =
|
27 |
else:
|
28 |
raise ValueError("Only type_bin=='bin' for binned and 'cum' for cumulative are supported")
|
29 |
|
30 |
|
31 |
-
|
32 |
if metric=='sig68':
|
33 |
ydata.append(sigma68(df_plot.zwerr))
|
|
|
34 |
elif metric=='bias':
|
35 |
-
ydata.append(np.
|
|
|
36 |
elif metric=='nmad':
|
37 |
ydata.append(nmad(df_plot.zwerr))
|
|
|
38 |
elif metric=='outliers':
|
39 |
-
ydata.append(len(df_plot[np.abs(df_plot.zwerr)>0.15])/len(df_plot))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
plt.plot(
|
42 |
-
plt.ylabel(f'{
|
43 |
-
plt.xlabel(f'{
|
44 |
|
45 |
plt.xticks(fontsize = 14)
|
46 |
plt.yticks(fontsize = 14)
|
@@ -48,4 +58,23 @@ def plot_photoz(df, nbins,xvariable,metric, type_bin='bin'):
|
|
48 |
plt.grid(False)
|
49 |
|
50 |
plt.show()
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def sigma68(data): return 0.5*(pd.Series(data).quantile(q = 0.84) - pd.Series(data).quantile(q = 0.16))
|
10 |
|
11 |
+
def plot_photoz_estimates(df, nbins,xvariable,metric, type_bin='bin'):
|
|
|
12 |
bin_edges = stats.mstats.mquantiles(df[xvariable].values, np.linspace(0.1,1,nbins))
|
13 |
+
ydata,xdata = [],[]
|
14 |
|
15 |
|
16 |
for k in range(len(bin_edges)-1):
|
|
|
20 |
mean_mag = (edge_max + edge_min) / 2
|
21 |
|
22 |
if type_bin=='bin':
|
23 |
+
df_plot = df[(df[xvariable] > edge_min) & (df[xvariable] < edge_max)]
|
24 |
elif type_bin=='cum':
|
25 |
+
df_plot = df[(df[xvariable] < edge_max)]
|
26 |
else:
|
27 |
raise ValueError("Only type_bin=='bin' for binned and 'cum' for cumulative are supported")
|
28 |
|
29 |
|
30 |
+
xdata.append(mean_mag)
|
31 |
if metric=='sig68':
|
32 |
ydata.append(sigma68(df_plot.zwerr))
|
33 |
+
ylab=r'$\sigma_{\rm NMAD} [\Delta z]$'
|
34 |
elif metric=='bias':
|
35 |
+
ydata.append(np.median(df_plot.zwerr))
|
36 |
+
ylab=r'Median $[\Delta z]$'
|
37 |
elif metric=='nmad':
|
38 |
ydata.append(nmad(df_plot.zwerr))
|
39 |
+
ylab=r'$\sigma_{\rm NMAD} [\Delta z]$'
|
40 |
elif metric=='outliers':
|
41 |
+
ydata.append(len(df_plot[np.abs(df_plot.zwerr)>0.15])/len(df_plot) *100)
|
42 |
+
ylab=r'$\eta$ [%]'
|
43 |
+
|
44 |
+
if xvariable=='VISmag':
|
45 |
+
xlab='VIS'
|
46 |
+
elif xvariable=='zs':
|
47 |
+
xlab=r'$z_{\rm spec}$'
|
48 |
+
elif xvariable=='z':
|
49 |
+
xlab=r'$z$'
|
50 |
|
51 |
+
plt.plot(xdata,ydata, ls = '-', marker = '.', color = 'navy',lw = 1, label = '')
|
52 |
+
plt.ylabel(f'{ylab}', fontsize = 18)
|
53 |
+
plt.xlabel(f'{xlab}', fontsize = 16)
|
54 |
|
55 |
plt.xticks(fontsize = 14)
|
56 |
plt.yticks(fontsize = 14)
|
|
|
58 |
plt.grid(False)
|
59 |
|
60 |
plt.show()
|
61 |
+
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
def plot_nz(df, bins=np.arange(0,5,0.2)):
|
66 |
+
kwargs=dict( bins=bins,alpha=0.5)
|
67 |
+
plt.hist(df.zs.values, color='grey', ls='-' ,**kwargs)
|
68 |
+
counts, _, =np.histogram(df.z.values, bins=bins)
|
69 |
+
|
70 |
+
plt.plot((bins[:-1]+bins[1:])*0.5,counts, color ='purple')
|
71 |
+
|
72 |
+
#plt.legend(fontsize=14)
|
73 |
+
plt.xlabel(r'Redshift', fontsize=14)
|
74 |
+
plt.ylabel(r'Counts', fontsize=14)
|
75 |
+
plt.yscale('log')
|
76 |
+
|
77 |
+
plt.show()
|
78 |
+
|
79 |
+
return
|
80 |
+
|