lauracabayol commited on
Commit
ae8634a
·
1 Parent(s): 703e938

notebooks currently used

Browse files
Files changed (31) hide show
  1. notebooks/.ipynb_checkpoints/CVAE-Copy1-checkpoint.ipynb +1833 -0
  2. notebooks/.ipynb_checkpoints/CVAE-checkpoint.ipynb +1833 -0
  3. notebooks/.ipynb_checkpoints/HandsON_outreach-Copy1-checkpoint.ipynb +0 -0
  4. notebooks/.ipynb_checkpoints/Insight_notebook-checkpoint.ipynb +0 -0
  5. notebooks/.ipynb_checkpoints/Normalizing_flows_Freia-checkpoint.ipynb +0 -0
  6. notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-Copy1-checkpoint.ipynb +0 -0
  7. notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-Copy2-checkpoint.ipynb +0 -0
  8. notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-Copy3-checkpoint.ipynb +0 -0
  9. notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-checkpoint.ipynb +0 -0
  10. notebooks/.ipynb_checkpoints/Normalizing_flows_Xiao+19-Copy1-checkpoint.ipynb +0 -0
  11. notebooks/.ipynb_checkpoints/Normalizing_flows_Xiao+19-Copy2-checkpoint.ipynb +0 -0
  12. notebooks/.ipynb_checkpoints/Normalizing_flows_Xiao+19-checkpoint.ipynb +0 -0
  13. notebooks/.ipynb_checkpoints/PLOTS-checkpoint.ipynb +0 -0
  14. notebooks/.ipynb_checkpoints/match_catalogues-checkpoint.ipynb +6 -0
  15. notebooks/.ipynb_checkpoints/toy_test-checkpoint.ipynb +6 -0
  16. notebooks/CVAE-Copy1.ipynb +2177 -0
  17. notebooks/CVAE.ipynb +0 -0
  18. notebooks/HandsON_outreach-Copy1.ipynb +0 -0
  19. notebooks/Insight_notebook.ipynb +0 -0
  20. notebooks/Normalizing_flows_Freia.ipynb +0 -0
  21. notebooks/Normalizing_flows_TEST-Copy1.ipynb +0 -0
  22. notebooks/Normalizing_flows_TEST-Copy2.ipynb +0 -0
  23. notebooks/Normalizing_flows_TEST-Copy3.ipynb +0 -0
  24. notebooks/Normalizing_flows_TEST.ipynb +0 -0
  25. notebooks/Normalizing_flows_Xiao+19-Copy1.ipynb +0 -0
  26. notebooks/Normalizing_flows_Xiao+19-Copy2.ipynb +0 -0
  27. notebooks/Normalizing_flows_Xiao+19.ipynb +0 -0
  28. notebooks/PLOTS.ipynb +579 -0
  29. notebooks/insight.pt +0 -0
  30. notebooks/match_catalogues.ipynb +1126 -0
  31. notebooks/toy_test.ipynb +0 -0
notebooks/.ipynb_checkpoints/CVAE-Copy1-checkpoint.ipynb ADDED
@@ -0,0 +1,1833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "10a00e46-827a-4278-a715-99526591a0a7",
7
+ "metadata": {
8
+ "tags": []
9
+ },
10
+ "outputs": [],
11
+ "source": [
12
+ "import torch.nn as nn\n",
13
+ "import torch\n",
14
+ "class CondVAE(nn.Module):\n",
15
+ " def __init__(self, dim_input, latent_dim=10, context_vector_size=6):\n",
16
+ " super(CondVAE, self).__init__()\n",
17
+ " \n",
18
+ " self.latent_dim = latent_dim\n",
19
+ "\n",
20
+ " # Encoder\n",
21
+ " self.encoder = nn.Sequential(\n",
22
+ " nn.Linear(in_features=dim_input, out_features=100),\n",
23
+ " nn.ReLU(),\n",
24
+ " nn.Linear(in_features=100, out_features=200),\n",
25
+ " nn.ReLU(),\n",
26
+ " nn.Linear(in_features=200, out_features=300),\n",
27
+ " nn.ReLU(),\n",
28
+ " nn.Linear(in_features=300, out_features=200),\n",
29
+ " nn.ReLU(),\n",
30
+ " nn.Linear(in_features=200, out_features=100),\n",
31
+ " nn.ReLU(),\n",
32
+ " nn.Flatten()\n",
33
+ " )\n",
34
+ " \n",
35
+ " self.fc_mu = nn.Linear(100, latent_dim)\n",
36
+ " self.fc_logvar = nn.Linear(100, latent_dim)\n",
37
+ "\n",
38
+ " # Decoder\n",
39
+ " self.decoder = nn.Sequential(\n",
40
+ " nn.Linear(in_features=latent_dim+6, out_features=100),\n",
41
+ " nn.ReLU(),\n",
42
+ " nn.Linear(in_features=100, out_features=200),\n",
43
+ " nn.ReLU(),\n",
44
+ " nn.Linear(in_features=200, out_features=300),\n",
45
+ " nn.ReLU(),\n",
46
+ " nn.Linear(in_features=300, out_features=200),\n",
47
+ " nn.ReLU(),\n",
48
+ " nn.Linear(in_features=200, out_features=100),\n",
49
+ " nn.ReLU(),\n",
50
+ " nn.Linear(in_features=100, out_features=1),\n",
51
+ " )\n",
52
+ "\n",
53
+ " def encode(self, x):\n",
54
+ " x = self.encoder(x)\n",
55
+ " mu = self.fc_mu(x)\n",
56
+ " log_var = self.fc_logvar(x)\n",
57
+ "\n",
58
+ " return mu, log_var\n",
59
+ " \n",
60
+ " def decode(self, z, context_vector):\n",
61
+ " # Concatenate the sampling (latent distribution) + embedding -> samples conditioned on both the input data and the specified label\n",
62
+ " #print(properties.shape, z.shape)\n",
63
+ " zcomb = torch.concat((z, context_vector), 1)\n",
64
+ " #print(zcomb.shape)\n",
65
+ " \n",
66
+ " return self.decoder(zcomb) \n",
67
+ " \n",
68
+ " def sampling(self, mu, log_var):\n",
69
+ " # calculate standard deviation\n",
70
+ " std = log_var.mul(0.5).exp_()\n",
71
+ " \n",
72
+ " # create noise tensor of same size as std to add to the latent vector\n",
73
+ " eps = torch.cuda.FloatTensor(std.size()).normal_()\n",
74
+ " \n",
75
+ " # multiply eps with std to scale the random noise according to the learned distribution + add combined\n",
76
+ " return eps.mul(std).add_(mu) # return z sample \n",
77
+ "\n",
78
+ " def forward(self, x, context_vector):\n",
79
+ " mu, log_var = self.encode(x)\n",
80
+ " z = self.sampling(mu, log_var)\n",
81
+ " #print(z.shape)\n",
82
+ "\n",
83
+ " return self.decode(z, context_vector), mu, log_var\n"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 2,
89
+ "id": "8bbbe719-f9a3-4ace-ac4c-ed29ec4f9486",
90
+ "metadata": {
91
+ "tags": []
92
+ },
93
+ "outputs": [],
94
+ "source": [
95
+ "import tqdm\n",
96
+ "import torch\n",
97
+ "import torch.nn as nn\n",
98
+ "\n",
99
+ "def condvae_loss(pred, label, mu, logvar):\n",
100
+ " \"\"\"\n",
101
+ " Calculate the conditional Variational Autoencoder (cVAE) loss.\n",
102
+ "\n",
103
+ " This function computes the cVAE loss, which consists of two components:\n",
104
+ " - Reconstruction loss: Measures the discrepancy between the reconstructed\n",
105
+ " data and the original input.\n",
106
+ " - KL divergence loss: Quantifies the difference between the learned latent\n",
107
+ " distribution and the desired prior distribution (Gaussian).\n",
108
+ "\n",
109
+ " Args:\n",
110
+ " recon_x (torch.Tensor): Reconstructed data from the VAE.\n",
111
+ " x (torch.Tensor): Original input data.\n",
112
+ " mu (torch.Tensor): Latent variable mean.\n",
113
+ " logvar (torch.Tensor): Logarithm of latent variable variance.\n",
114
+ "\n",
115
+ " Returns:\n",
116
+ " torch.Tensor: Computed cVAE loss.\n",
117
+ " \"\"\"\n",
118
+ " \n",
119
+ " # MSE loss element-wise and sums up the individual losses\n",
120
+ " cde_loss = nn.MSELoss(reduction='mean')(pred, label)\n",
121
+ " \n",
122
+ " # quantifies the difference between the learned latent distribution and the desired prior distribution (Gaussian)\n",
123
+ " kl_divergence = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())\n",
124
+ " \n",
125
+ " return cde_loss + kl_divergence\n",
126
+ "\n",
127
+ "def VAE_trainEpoch(model, optimizer, train_loader, dim_in=100):\n",
128
+ " \"\"\"\n",
129
+ " Train a Variational Autoencoder (VAE) for one epoch.\n",
130
+ "\n",
131
+ " This function trains a VAE for one epoch using the provided data loader.\n",
132
+ " It calculates the cVAE loss, performs backpropagation, and updates the model's parameters.\n",
133
+ "\n",
134
+ " Args:\n",
135
+ " model (nn.Module): VAE model to be trained.\n",
136
+ " optimizer (torch.optim.Optimizer): Optimizer for updating model parameters.\n",
137
+ " train_loader (DataLoader): DataLoader containing training data.\n",
138
+ " dim_in (int): Dimensionality of the input noise.\n",
139
+ "\n",
140
+ " Returns:\n",
141
+ " float: Average loss for the epoch.\n",
142
+ " \"\"\"\n",
143
+ " model = model.train()\n",
144
+ " device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
145
+ " total_loss = 0\n",
146
+ "\n",
147
+ " progress_bar = tqdm.tqdm(train_loader, desc=\"Epoch Progress\", leave=False)\n",
148
+ " for context_vector, label in progress_bar:\n",
149
+ " context_vector = context_vector.to(device)\n",
150
+ " datain = torch.randn(size=(len(context_vector), dim_in)).to(device)\n",
151
+ " label = label.unsqueeze(1).cuda()\n",
152
+ " optimizer.zero_grad()\n",
153
+ "\n",
154
+ " recon_batch, mu, log_var = model(datain, context_vector)\n",
155
+ " loss = condvae_loss(recon_batch, label, mu, log_var)\n",
156
+ "\n",
157
+ " loss.backward()\n",
158
+ " optimizer.step()\n",
159
+ "\n",
160
+ " total_loss += loss.item()\n",
161
+ " progress_bar.set_postfix({\"Loss\": total_loss / (progress_bar.n + 1)})\n",
162
+ "\n",
163
+ " return total_loss / len(train_loader)\n",
164
+ "\n",
165
+ "def VAE_train(model, optimizer, train_loader, epochs, dim_in, save_path=None):\n",
166
+ " \"\"\"\n",
167
+ " Train a Variational Autoencoder (VAE) for multiple epochs.\n",
168
+ "\n",
169
+ " This function trains a VAE for the specified number of epochs using the provided data loader.\n",
170
+ " It prints the epoch progress and the computed loss for each epoch.\n",
171
+ "\n",
172
+ " Args:\n",
173
+ " model (nn.Module): VAE model to be trained.\n",
174
+ " optimizer (torch.optim.Optimizer): Optimizer for updating model parameters.\n",
175
+ " train_loader (DataLoader): DataLoader containing training data.\n",
176
+ " epochs (int): Number of epochs for training.\n",
177
+ "\n",
178
+ " Returns:\n",
179
+ " None\n",
180
+ " \"\"\"\n",
181
+ " for epoch in range(epochs):\n",
182
+ " print(f\"Epoch {epoch + 1}/{epochs}\")\n",
183
+ " epoch_loss = VAE_trainEpoch(model, optimizer, train_loader, dim_in)\n",
184
+ " print(f\"Epoch {epoch + 1}/{epochs}, Loss: {epoch_loss:.4f}\")\n",
185
+ " \n",
186
+ " if save_path!=None:\n",
187
+ " torch.save(model, save_path)\n",
188
+ "\n"
189
+ ]
190
+ },
191
+ {
192
+ "cell_type": "code",
193
+ "execution_count": 3,
194
+ "id": "11aaa0e9-e745-483a-887d-d851e791f8e4",
195
+ "metadata": {
196
+ "tags": []
197
+ },
198
+ "outputs": [],
199
+ "source": [
200
+ "import numpy as np\n",
201
+ "import pandas as pd\n",
202
+ "from astropy.io import fits\n",
203
+ "import os\n",
204
+ "from astropy.table import Table\n",
205
+ "from scipy.spatial import KDTree\n",
206
+ "\n",
207
+ "import matplotlib.pyplot as plt\n",
208
+ "\n",
209
+ "from IPython.display import Image\n",
210
+ "from IPython.core.display import HTML "
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": 4,
216
+ "id": "0814440a-e341-4540-bfba-466b74b9873d",
217
+ "metadata": {
218
+ "tags": []
219
+ },
220
+ "outputs": [],
221
+ "source": [
222
+ "import torch\n",
223
+ "from torch.utils.data import DataLoader, dataset, TensorDataset\n",
224
+ "from torch import nn, optim\n",
225
+ "from torch.optim import lr_scheduler"
226
+ ]
227
+ },
228
+ {
229
+ "cell_type": "code",
230
+ "execution_count": 5,
231
+ "id": "8ecf9b60-bd03-4fa6-9516-c767d04b2071",
232
+ "metadata": {
233
+ "tags": []
234
+ },
235
+ "outputs": [],
236
+ "source": [
237
+ "import sys\n",
238
+ "sys.path.append('../insight')\n",
239
+ "from archive import archive \n",
240
+ "from insight_arch import Photoz_network\n",
241
+ "from insight import Insight_module\n",
242
+ "from utils import sigma68, nmad, plot_photoz_estimates\n",
243
+ "from scipy import stats"
244
+ ]
245
+ },
246
+ {
247
+ "cell_type": "code",
248
+ "execution_count": 272,
249
+ "id": "1277097d-e4bb-4bdd-b1f4-bccc88be0169",
250
+ "metadata": {
251
+ "tags": []
252
+ },
253
+ "outputs": [],
254
+ "source": [
255
+ "from matplotlib import rcParams\n",
256
+ "rcParams[\"mathtext.fontset\"] = \"stix\"\n",
257
+ "rcParams[\"font.family\"] = \"STIXGeneral\"\n",
258
+ "parent_dir = '/data/astro/scratch/lcabayol/Euclid/NNphotozs/Euclid_EXT_MER_PHZ_DC2_v1.5'"
259
+ ]
260
+ },
261
+ {
262
+ "cell_type": "code",
263
+ "execution_count": 273,
264
+ "id": "5d2d3713-ff7f-4f16-860f-cf5ff42801b1",
265
+ "metadata": {
266
+ "tags": []
267
+ },
268
+ "outputs": [],
269
+ "source": [
270
+ "photoz_archive = archive(path = parent_dir, Qz_cut=1)\n",
271
+ "f, ferr, specz, specqz = photoz_archive.get_training_data()"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": 274,
277
+ "id": "45af2d9e-1160-4859-9888-f5daf62df84a",
278
+ "metadata": {
279
+ "tags": []
280
+ },
281
+ "outputs": [],
282
+ "source": [
283
+ "dset = TensorDataset(torch.Tensor(f),torch.Tensor(specz))\n",
284
+ "loader = DataLoader(dset, batch_size=100, shuffle=True)"
285
+ ]
286
+ },
287
+ {
288
+ "cell_type": "code",
289
+ "execution_count": 275,
290
+ "id": "dad8733c-c36a-4e86-b32d-41c244ba6259",
291
+ "metadata": {
292
+ "tags": []
293
+ },
294
+ "outputs": [],
295
+ "source": [
296
+ "dim_input=50\n",
297
+ "latent_dim=10\n",
298
+ "context_vector_dim=6\n",
299
+ "epochs=100\n",
300
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n"
301
+ ]
302
+ },
303
+ {
304
+ "cell_type": "code",
305
+ "execution_count": 276,
306
+ "id": "ef0b6560-dd3d-4b9d-a14c-43bf9338f7a4",
307
+ "metadata": {
308
+ "tags": []
309
+ },
310
+ "outputs": [],
311
+ "source": [
312
+ "vae = CondVAE(dim_input, latent_dim=latent_dim, context_vector_size=6).to(device)\n",
313
+ "optimizer = optim.Adam(vae.parameters(), lr=1e-3, weight_decay=1e-4)\n"
314
+ ]
315
+ },
316
+ {
317
+ "cell_type": "code",
318
+ "execution_count": null,
319
+ "id": "dd04d484-d14d-488d-a640-180fb6ab1001",
320
+ "metadata": {
321
+ "collapsed": true,
322
+ "jupyter": {
323
+ "outputs_hidden": true
324
+ },
325
+ "tags": []
326
+ },
327
+ "outputs": [
328
+ {
329
+ "name": "stdout",
330
+ "output_type": "stream",
331
+ "text": [
332
+ "Epoch 1/100\n"
333
+ ]
334
+ },
335
+ {
336
+ "name": "stderr",
337
+ "output_type": "stream",
338
+ "text": [
339
+ " \r"
340
+ ]
341
+ },
342
+ {
343
+ "name": "stdout",
344
+ "output_type": "stream",
345
+ "text": [
346
+ "Epoch 1/100, Loss: 70.1670\n",
347
+ "Epoch 2/100\n"
348
+ ]
349
+ },
350
+ {
351
+ "name": "stderr",
352
+ "output_type": "stream",
353
+ "text": [
354
+ " \r"
355
+ ]
356
+ },
357
+ {
358
+ "name": "stdout",
359
+ "output_type": "stream",
360
+ "text": [
361
+ "Epoch 2/100, Loss: 5.8741\n",
362
+ "Epoch 3/100\n"
363
+ ]
364
+ },
365
+ {
366
+ "name": "stderr",
367
+ "output_type": "stream",
368
+ "text": [
369
+ " \r"
370
+ ]
371
+ },
372
+ {
373
+ "name": "stdout",
374
+ "output_type": "stream",
375
+ "text": [
376
+ "Epoch 3/100, Loss: 0.4596\n",
377
+ "Epoch 4/100\n"
378
+ ]
379
+ },
380
+ {
381
+ "name": "stderr",
382
+ "output_type": "stream",
383
+ "text": [
384
+ " \r"
385
+ ]
386
+ },
387
+ {
388
+ "name": "stdout",
389
+ "output_type": "stream",
390
+ "text": [
391
+ "Epoch 4/100, Loss: 0.9228\n",
392
+ "Epoch 5/100\n"
393
+ ]
394
+ },
395
+ {
396
+ "name": "stderr",
397
+ "output_type": "stream",
398
+ "text": [
399
+ " \r"
400
+ ]
401
+ },
402
+ {
403
+ "name": "stdout",
404
+ "output_type": "stream",
405
+ "text": [
406
+ "Epoch 5/100, Loss: 0.5939\n",
407
+ "Epoch 6/100\n"
408
+ ]
409
+ },
410
+ {
411
+ "name": "stderr",
412
+ "output_type": "stream",
413
+ "text": [
414
+ " \r"
415
+ ]
416
+ },
417
+ {
418
+ "name": "stdout",
419
+ "output_type": "stream",
420
+ "text": [
421
+ "Epoch 6/100, Loss: 0.7836\n",
422
+ "Epoch 7/100\n"
423
+ ]
424
+ },
425
+ {
426
+ "name": "stderr",
427
+ "output_type": "stream",
428
+ "text": [
429
+ " \r"
430
+ ]
431
+ },
432
+ {
433
+ "name": "stdout",
434
+ "output_type": "stream",
435
+ "text": [
436
+ "Epoch 7/100, Loss: 0.4829\n",
437
+ "Epoch 8/100\n"
438
+ ]
439
+ },
440
+ {
441
+ "name": "stderr",
442
+ "output_type": "stream",
443
+ "text": [
444
+ " \r"
445
+ ]
446
+ },
447
+ {
448
+ "name": "stdout",
449
+ "output_type": "stream",
450
+ "text": [
451
+ "Epoch 8/100, Loss: 0.5570\n",
452
+ "Epoch 9/100\n"
453
+ ]
454
+ },
455
+ {
456
+ "name": "stderr",
457
+ "output_type": "stream",
458
+ "text": [
459
+ " \r"
460
+ ]
461
+ },
462
+ {
463
+ "name": "stdout",
464
+ "output_type": "stream",
465
+ "text": [
466
+ "Epoch 9/100, Loss: 0.4176\n",
467
+ "Epoch 10/100\n"
468
+ ]
469
+ },
470
+ {
471
+ "name": "stderr",
472
+ "output_type": "stream",
473
+ "text": [
474
+ " \r"
475
+ ]
476
+ },
477
+ {
478
+ "name": "stdout",
479
+ "output_type": "stream",
480
+ "text": [
481
+ "Epoch 10/100, Loss: 0.9913\n",
482
+ "Epoch 11/100\n"
483
+ ]
484
+ },
485
+ {
486
+ "name": "stderr",
487
+ "output_type": "stream",
488
+ "text": [
489
+ " \r"
490
+ ]
491
+ },
492
+ {
493
+ "name": "stdout",
494
+ "output_type": "stream",
495
+ "text": [
496
+ "Epoch 11/100, Loss: 0.3367\n",
497
+ "Epoch 12/100\n"
498
+ ]
499
+ },
500
+ {
501
+ "name": "stderr",
502
+ "output_type": "stream",
503
+ "text": [
504
+ " \r"
505
+ ]
506
+ },
507
+ {
508
+ "name": "stdout",
509
+ "output_type": "stream",
510
+ "text": [
511
+ "Epoch 12/100, Loss: 0.3655\n",
512
+ "Epoch 13/100\n"
513
+ ]
514
+ },
515
+ {
516
+ "name": "stderr",
517
+ "output_type": "stream",
518
+ "text": [
519
+ " \r"
520
+ ]
521
+ },
522
+ {
523
+ "name": "stdout",
524
+ "output_type": "stream",
525
+ "text": [
526
+ "Epoch 13/100, Loss: 0.2642\n",
527
+ "Epoch 14/100\n"
528
+ ]
529
+ },
530
+ {
531
+ "name": "stderr",
532
+ "output_type": "stream",
533
+ "text": [
534
+ " \r"
535
+ ]
536
+ },
537
+ {
538
+ "name": "stdout",
539
+ "output_type": "stream",
540
+ "text": [
541
+ "Epoch 14/100, Loss: 0.2729\n",
542
+ "Epoch 15/100\n"
543
+ ]
544
+ },
545
+ {
546
+ "name": "stderr",
547
+ "output_type": "stream",
548
+ "text": [
549
+ " \r"
550
+ ]
551
+ },
552
+ {
553
+ "name": "stdout",
554
+ "output_type": "stream",
555
+ "text": [
556
+ "Epoch 15/100, Loss: 0.2490\n",
557
+ "Epoch 16/100\n"
558
+ ]
559
+ },
560
+ {
561
+ "name": "stderr",
562
+ "output_type": "stream",
563
+ "text": [
564
+ " \r"
565
+ ]
566
+ },
567
+ {
568
+ "name": "stdout",
569
+ "output_type": "stream",
570
+ "text": [
571
+ "Epoch 16/100, Loss: 0.2426\n",
572
+ "Epoch 17/100\n"
573
+ ]
574
+ },
575
+ {
576
+ "name": "stderr",
577
+ "output_type": "stream",
578
+ "text": [
579
+ " \r"
580
+ ]
581
+ },
582
+ {
583
+ "name": "stdout",
584
+ "output_type": "stream",
585
+ "text": [
586
+ "Epoch 17/100, Loss: 0.2418\n",
587
+ "Epoch 18/100\n"
588
+ ]
589
+ },
590
+ {
591
+ "name": "stderr",
592
+ "output_type": "stream",
593
+ "text": [
594
+ " \r"
595
+ ]
596
+ },
597
+ {
598
+ "name": "stdout",
599
+ "output_type": "stream",
600
+ "text": [
601
+ "Epoch 18/100, Loss: 0.2341\n",
602
+ "Epoch 19/100\n"
603
+ ]
604
+ },
605
+ {
606
+ "name": "stderr",
607
+ "output_type": "stream",
608
+ "text": [
609
+ " \r"
610
+ ]
611
+ },
612
+ {
613
+ "name": "stdout",
614
+ "output_type": "stream",
615
+ "text": [
616
+ "Epoch 19/100, Loss: 0.2288\n",
617
+ "Epoch 20/100\n"
618
+ ]
619
+ },
620
+ {
621
+ "name": "stderr",
622
+ "output_type": "stream",
623
+ "text": [
624
+ " \r"
625
+ ]
626
+ },
627
+ {
628
+ "name": "stdout",
629
+ "output_type": "stream",
630
+ "text": [
631
+ "Epoch 20/100, Loss: 0.2216\n",
632
+ "Epoch 21/100\n"
633
+ ]
634
+ },
635
+ {
636
+ "name": "stderr",
637
+ "output_type": "stream",
638
+ "text": [
639
+ " \r"
640
+ ]
641
+ },
642
+ {
643
+ "name": "stdout",
644
+ "output_type": "stream",
645
+ "text": [
646
+ "Epoch 21/100, Loss: 0.2200\n",
647
+ "Epoch 22/100\n"
648
+ ]
649
+ },
650
+ {
651
+ "name": "stderr",
652
+ "output_type": "stream",
653
+ "text": [
654
+ " \r"
655
+ ]
656
+ },
657
+ {
658
+ "name": "stdout",
659
+ "output_type": "stream",
660
+ "text": [
661
+ "Epoch 22/100, Loss: 0.2140\n",
662
+ "Epoch 23/100\n"
663
+ ]
664
+ },
665
+ {
666
+ "name": "stderr",
667
+ "output_type": "stream",
668
+ "text": [
669
+ " \r"
670
+ ]
671
+ },
672
+ {
673
+ "name": "stdout",
674
+ "output_type": "stream",
675
+ "text": [
676
+ "Epoch 23/100, Loss: 0.2125\n",
677
+ "Epoch 24/100\n"
678
+ ]
679
+ },
680
+ {
681
+ "name": "stderr",
682
+ "output_type": "stream",
683
+ "text": [
684
+ " \r"
685
+ ]
686
+ },
687
+ {
688
+ "name": "stdout",
689
+ "output_type": "stream",
690
+ "text": [
691
+ "Epoch 24/100, Loss: 0.2178\n",
692
+ "Epoch 25/100\n"
693
+ ]
694
+ },
695
+ {
696
+ "name": "stderr",
697
+ "output_type": "stream",
698
+ "text": [
699
+ " \r"
700
+ ]
701
+ },
702
+ {
703
+ "name": "stdout",
704
+ "output_type": "stream",
705
+ "text": [
706
+ "Epoch 25/100, Loss: 0.2127\n",
707
+ "Epoch 26/100\n"
708
+ ]
709
+ },
710
+ {
711
+ "name": "stderr",
712
+ "output_type": "stream",
713
+ "text": [
714
+ " \r"
715
+ ]
716
+ },
717
+ {
718
+ "name": "stdout",
719
+ "output_type": "stream",
720
+ "text": [
721
+ "Epoch 26/100, Loss: 0.2057\n",
722
+ "Epoch 27/100\n"
723
+ ]
724
+ },
725
+ {
726
+ "name": "stderr",
727
+ "output_type": "stream",
728
+ "text": [
729
+ " \r"
730
+ ]
731
+ },
732
+ {
733
+ "name": "stdout",
734
+ "output_type": "stream",
735
+ "text": [
736
+ "Epoch 27/100, Loss: 0.2168\n",
737
+ "Epoch 28/100\n"
738
+ ]
739
+ },
740
+ {
741
+ "name": "stderr",
742
+ "output_type": "stream",
743
+ "text": [
744
+ " \r"
745
+ ]
746
+ },
747
+ {
748
+ "name": "stdout",
749
+ "output_type": "stream",
750
+ "text": [
751
+ "Epoch 28/100, Loss: 0.2043\n",
752
+ "Epoch 29/100\n"
753
+ ]
754
+ },
755
+ {
756
+ "name": "stderr",
757
+ "output_type": "stream",
758
+ "text": [
759
+ " \r"
760
+ ]
761
+ },
762
+ {
763
+ "name": "stdout",
764
+ "output_type": "stream",
765
+ "text": [
766
+ "Epoch 29/100, Loss: 0.2039\n",
767
+ "Epoch 30/100\n"
768
+ ]
769
+ },
770
+ {
771
+ "name": "stderr",
772
+ "output_type": "stream",
773
+ "text": [
774
+ " \r"
775
+ ]
776
+ },
777
+ {
778
+ "name": "stdout",
779
+ "output_type": "stream",
780
+ "text": [
781
+ "Epoch 30/100, Loss: 0.1975\n",
782
+ "Epoch 31/100\n"
783
+ ]
784
+ },
785
+ {
786
+ "name": "stderr",
787
+ "output_type": "stream",
788
+ "text": [
789
+ " \r"
790
+ ]
791
+ },
792
+ {
793
+ "name": "stdout",
794
+ "output_type": "stream",
795
+ "text": [
796
+ "Epoch 31/100, Loss: 0.1956\n",
797
+ "Epoch 32/100\n"
798
+ ]
799
+ },
800
+ {
801
+ "name": "stderr",
802
+ "output_type": "stream",
803
+ "text": [
804
+ " \r"
805
+ ]
806
+ },
807
+ {
808
+ "name": "stdout",
809
+ "output_type": "stream",
810
+ "text": [
811
+ "Epoch 32/100, Loss: 0.1958\n",
812
+ "Epoch 33/100\n"
813
+ ]
814
+ },
815
+ {
816
+ "name": "stderr",
817
+ "output_type": "stream",
818
+ "text": [
819
+ " \r"
820
+ ]
821
+ },
822
+ {
823
+ "name": "stdout",
824
+ "output_type": "stream",
825
+ "text": [
826
+ "Epoch 33/100, Loss: 0.1893\n",
827
+ "Epoch 34/100\n"
828
+ ]
829
+ },
830
+ {
831
+ "name": "stderr",
832
+ "output_type": "stream",
833
+ "text": [
834
+ " \r"
835
+ ]
836
+ },
837
+ {
838
+ "name": "stdout",
839
+ "output_type": "stream",
840
+ "text": [
841
+ "Epoch 34/100, Loss: 0.1890\n",
842
+ "Epoch 35/100\n"
843
+ ]
844
+ },
845
+ {
846
+ "name": "stderr",
847
+ "output_type": "stream",
848
+ "text": [
849
+ " \r"
850
+ ]
851
+ },
852
+ {
853
+ "name": "stdout",
854
+ "output_type": "stream",
855
+ "text": [
856
+ "Epoch 35/100, Loss: 0.1869\n",
857
+ "Epoch 36/100\n"
858
+ ]
859
+ },
860
+ {
861
+ "name": "stderr",
862
+ "output_type": "stream",
863
+ "text": [
864
+ " \r"
865
+ ]
866
+ },
867
+ {
868
+ "name": "stdout",
869
+ "output_type": "stream",
870
+ "text": [
871
+ "Epoch 36/100, Loss: 0.1818\n",
872
+ "Epoch 37/100\n"
873
+ ]
874
+ },
875
+ {
876
+ "name": "stderr",
877
+ "output_type": "stream",
878
+ "text": [
879
+ " \r"
880
+ ]
881
+ },
882
+ {
883
+ "name": "stdout",
884
+ "output_type": "stream",
885
+ "text": [
886
+ "Epoch 37/100, Loss: 0.1784\n",
887
+ "Epoch 38/100\n"
888
+ ]
889
+ },
890
+ {
891
+ "name": "stderr",
892
+ "output_type": "stream",
893
+ "text": [
894
+ " \r"
895
+ ]
896
+ },
897
+ {
898
+ "name": "stdout",
899
+ "output_type": "stream",
900
+ "text": [
901
+ "Epoch 38/100, Loss: 0.1761\n",
902
+ "Epoch 39/100\n"
903
+ ]
904
+ },
905
+ {
906
+ "name": "stderr",
907
+ "output_type": "stream",
908
+ "text": [
909
+ " \r"
910
+ ]
911
+ },
912
+ {
913
+ "name": "stdout",
914
+ "output_type": "stream",
915
+ "text": [
916
+ "Epoch 39/100, Loss: 0.1757\n",
917
+ "Epoch 40/100\n"
918
+ ]
919
+ },
920
+ {
921
+ "name": "stderr",
922
+ "output_type": "stream",
923
+ "text": [
924
+ " \r"
925
+ ]
926
+ },
927
+ {
928
+ "name": "stdout",
929
+ "output_type": "stream",
930
+ "text": [
931
+ "Epoch 40/100, Loss: 0.1746\n",
932
+ "Epoch 41/100\n"
933
+ ]
934
+ },
935
+ {
936
+ "name": "stderr",
937
+ "output_type": "stream",
938
+ "text": [
939
+ " \r"
940
+ ]
941
+ },
942
+ {
943
+ "name": "stdout",
944
+ "output_type": "stream",
945
+ "text": [
946
+ "Epoch 41/100, Loss: 0.1756\n",
947
+ "Epoch 42/100\n"
948
+ ]
949
+ },
950
+ {
951
+ "name": "stderr",
952
+ "output_type": "stream",
953
+ "text": [
954
+ " \r"
955
+ ]
956
+ },
957
+ {
958
+ "name": "stdout",
959
+ "output_type": "stream",
960
+ "text": [
961
+ "Epoch 42/100, Loss: 0.1711\n",
962
+ "Epoch 43/100\n"
963
+ ]
964
+ },
965
+ {
966
+ "name": "stderr",
967
+ "output_type": "stream",
968
+ "text": [
969
+ " \r"
970
+ ]
971
+ },
972
+ {
973
+ "name": "stdout",
974
+ "output_type": "stream",
975
+ "text": [
976
+ "Epoch 43/100, Loss: 0.1706\n",
977
+ "Epoch 44/100\n"
978
+ ]
979
+ },
980
+ {
981
+ "name": "stderr",
982
+ "output_type": "stream",
983
+ "text": [
984
+ " \r"
985
+ ]
986
+ },
987
+ {
988
+ "name": "stdout",
989
+ "output_type": "stream",
990
+ "text": [
991
+ "Epoch 44/100, Loss: 0.1681\n",
992
+ "Epoch 45/100\n"
993
+ ]
994
+ },
995
+ {
996
+ "name": "stderr",
997
+ "output_type": "stream",
998
+ "text": [
999
+ " \r"
1000
+ ]
1001
+ },
1002
+ {
1003
+ "name": "stdout",
1004
+ "output_type": "stream",
1005
+ "text": [
1006
+ "Epoch 45/100, Loss: 0.1672\n",
1007
+ "Epoch 46/100\n"
1008
+ ]
1009
+ },
1010
+ {
1011
+ "name": "stderr",
1012
+ "output_type": "stream",
1013
+ "text": [
1014
+ " \r"
1015
+ ]
1016
+ },
1017
+ {
1018
+ "name": "stdout",
1019
+ "output_type": "stream",
1020
+ "text": [
1021
+ "Epoch 46/100, Loss: 0.1617\n",
1022
+ "Epoch 47/100\n"
1023
+ ]
1024
+ },
1025
+ {
1026
+ "name": "stderr",
1027
+ "output_type": "stream",
1028
+ "text": [
1029
+ " \r"
1030
+ ]
1031
+ },
1032
+ {
1033
+ "name": "stdout",
1034
+ "output_type": "stream",
1035
+ "text": [
1036
+ "Epoch 47/100, Loss: 0.1637\n",
1037
+ "Epoch 48/100\n"
1038
+ ]
1039
+ },
1040
+ {
1041
+ "name": "stderr",
1042
+ "output_type": "stream",
1043
+ "text": [
1044
+ " \r"
1045
+ ]
1046
+ },
1047
+ {
1048
+ "name": "stdout",
1049
+ "output_type": "stream",
1050
+ "text": [
1051
+ "Epoch 48/100, Loss: 0.1681\n",
1052
+ "Epoch 49/100\n"
1053
+ ]
1054
+ },
1055
+ {
1056
+ "name": "stderr",
1057
+ "output_type": "stream",
1058
+ "text": [
1059
+ " \r"
1060
+ ]
1061
+ },
1062
+ {
1063
+ "name": "stdout",
1064
+ "output_type": "stream",
1065
+ "text": [
1066
+ "Epoch 49/100, Loss: 0.1637\n",
1067
+ "Epoch 50/100\n"
1068
+ ]
1069
+ },
1070
+ {
1071
+ "name": "stderr",
1072
+ "output_type": "stream",
1073
+ "text": [
1074
+ " \r"
1075
+ ]
1076
+ },
1077
+ {
1078
+ "name": "stdout",
1079
+ "output_type": "stream",
1080
+ "text": [
1081
+ "Epoch 50/100, Loss: 0.1584\n",
1082
+ "Epoch 51/100\n"
1083
+ ]
1084
+ },
1085
+ {
1086
+ "name": "stderr",
1087
+ "output_type": "stream",
1088
+ "text": [
1089
+ " \r"
1090
+ ]
1091
+ },
1092
+ {
1093
+ "name": "stdout",
1094
+ "output_type": "stream",
1095
+ "text": [
1096
+ "Epoch 51/100, Loss: 0.1591\n",
1097
+ "Epoch 52/100\n"
1098
+ ]
1099
+ },
1100
+ {
1101
+ "name": "stderr",
1102
+ "output_type": "stream",
1103
+ "text": [
1104
+ " \r"
1105
+ ]
1106
+ },
1107
+ {
1108
+ "name": "stdout",
1109
+ "output_type": "stream",
1110
+ "text": [
1111
+ "Epoch 52/100, Loss: 0.1583\n",
1112
+ "Epoch 53/100\n"
1113
+ ]
1114
+ },
1115
+ {
1116
+ "name": "stderr",
1117
+ "output_type": "stream",
1118
+ "text": [
1119
+ " \r"
1120
+ ]
1121
+ },
1122
+ {
1123
+ "name": "stdout",
1124
+ "output_type": "stream",
1125
+ "text": [
1126
+ "Epoch 53/100, Loss: 0.1536\n",
1127
+ "Epoch 54/100\n"
1128
+ ]
1129
+ },
1130
+ {
1131
+ "name": "stderr",
1132
+ "output_type": "stream",
1133
+ "text": [
1134
+ " \r"
1135
+ ]
1136
+ },
1137
+ {
1138
+ "name": "stdout",
1139
+ "output_type": "stream",
1140
+ "text": [
1141
+ "Epoch 54/100, Loss: 0.1584\n",
1142
+ "Epoch 55/100\n"
1143
+ ]
1144
+ },
1145
+ {
1146
+ "name": "stderr",
1147
+ "output_type": "stream",
1148
+ "text": [
1149
+ " \r"
1150
+ ]
1151
+ },
1152
+ {
1153
+ "name": "stdout",
1154
+ "output_type": "stream",
1155
+ "text": [
1156
+ "Epoch 55/100, Loss: 0.1624\n",
1157
+ "Epoch 56/100\n"
1158
+ ]
1159
+ },
1160
+ {
1161
+ "name": "stderr",
1162
+ "output_type": "stream",
1163
+ "text": [
1164
+ " \r"
1165
+ ]
1166
+ },
1167
+ {
1168
+ "name": "stdout",
1169
+ "output_type": "stream",
1170
+ "text": [
1171
+ "Epoch 56/100, Loss: 0.1602\n",
1172
+ "Epoch 57/100\n"
1173
+ ]
1174
+ },
1175
+ {
1176
+ "name": "stderr",
1177
+ "output_type": "stream",
1178
+ "text": [
1179
+ " \r"
1180
+ ]
1181
+ },
1182
+ {
1183
+ "name": "stdout",
1184
+ "output_type": "stream",
1185
+ "text": [
1186
+ "Epoch 57/100, Loss: 0.1547\n",
1187
+ "Epoch 58/100\n"
1188
+ ]
1189
+ },
1190
+ {
1191
+ "name": "stderr",
1192
+ "output_type": "stream",
1193
+ "text": [
1194
+ " \r"
1195
+ ]
1196
+ },
1197
+ {
1198
+ "name": "stdout",
1199
+ "output_type": "stream",
1200
+ "text": [
1201
+ "Epoch 58/100, Loss: 0.1540\n",
1202
+ "Epoch 59/100\n"
1203
+ ]
1204
+ },
1205
+ {
1206
+ "name": "stderr",
1207
+ "output_type": "stream",
1208
+ "text": [
1209
+ " \r"
1210
+ ]
1211
+ },
1212
+ {
1213
+ "name": "stdout",
1214
+ "output_type": "stream",
1215
+ "text": [
1216
+ "Epoch 59/100, Loss: 0.1541\n",
1217
+ "Epoch 60/100\n"
1218
+ ]
1219
+ },
1220
+ {
1221
+ "name": "stderr",
1222
+ "output_type": "stream",
1223
+ "text": [
1224
+ " \r"
1225
+ ]
1226
+ },
1227
+ {
1228
+ "name": "stdout",
1229
+ "output_type": "stream",
1230
+ "text": [
1231
+ "Epoch 60/100, Loss: 0.1505\n",
1232
+ "Epoch 61/100\n"
1233
+ ]
1234
+ },
1235
+ {
1236
+ "name": "stderr",
1237
+ "output_type": "stream",
1238
+ "text": [
1239
+ " \r"
1240
+ ]
1241
+ },
1242
+ {
1243
+ "name": "stdout",
1244
+ "output_type": "stream",
1245
+ "text": [
1246
+ "Epoch 61/100, Loss: 0.1521\n",
1247
+ "Epoch 62/100\n"
1248
+ ]
1249
+ },
1250
+ {
1251
+ "name": "stderr",
1252
+ "output_type": "stream",
1253
+ "text": [
1254
+ " \r"
1255
+ ]
1256
+ },
1257
+ {
1258
+ "name": "stdout",
1259
+ "output_type": "stream",
1260
+ "text": [
1261
+ "Epoch 62/100, Loss: 0.1504\n",
1262
+ "Epoch 63/100\n"
1263
+ ]
1264
+ },
1265
+ {
1266
+ "name": "stderr",
1267
+ "output_type": "stream",
1268
+ "text": [
1269
+ " \r"
1270
+ ]
1271
+ },
1272
+ {
1273
+ "name": "stdout",
1274
+ "output_type": "stream",
1275
+ "text": [
1276
+ "Epoch 63/100, Loss: 0.1505\n",
1277
+ "Epoch 64/100\n"
1278
+ ]
1279
+ },
1280
+ {
1281
+ "name": "stderr",
1282
+ "output_type": "stream",
1283
+ "text": [
1284
+ " \r"
1285
+ ]
1286
+ },
1287
+ {
1288
+ "name": "stdout",
1289
+ "output_type": "stream",
1290
+ "text": [
1291
+ "Epoch 64/100, Loss: 0.1466\n",
1292
+ "Epoch 65/100\n"
1293
+ ]
1294
+ },
1295
+ {
1296
+ "name": "stderr",
1297
+ "output_type": "stream",
1298
+ "text": [
1299
+ " \r"
1300
+ ]
1301
+ },
1302
+ {
1303
+ "name": "stdout",
1304
+ "output_type": "stream",
1305
+ "text": [
1306
+ "Epoch 65/100, Loss: 0.1463\n",
1307
+ "Epoch 66/100\n"
1308
+ ]
1309
+ },
1310
+ {
1311
+ "name": "stderr",
1312
+ "output_type": "stream",
1313
+ "text": [
1314
+ " \r"
1315
+ ]
1316
+ },
1317
+ {
1318
+ "name": "stdout",
1319
+ "output_type": "stream",
1320
+ "text": [
1321
+ "Epoch 66/100, Loss: 0.1517\n",
1322
+ "Epoch 67/100\n"
1323
+ ]
1324
+ },
1325
+ {
1326
+ "name": "stderr",
1327
+ "output_type": "stream",
1328
+ "text": [
1329
+ " \r"
1330
+ ]
1331
+ },
1332
+ {
1333
+ "name": "stdout",
1334
+ "output_type": "stream",
1335
+ "text": [
1336
+ "Epoch 67/100, Loss: 0.1461\n",
1337
+ "Epoch 68/100\n"
1338
+ ]
1339
+ },
1340
+ {
1341
+ "name": "stderr",
1342
+ "output_type": "stream",
1343
+ "text": [
1344
+ " \r"
1345
+ ]
1346
+ },
1347
+ {
1348
+ "name": "stdout",
1349
+ "output_type": "stream",
1350
+ "text": [
1351
+ "Epoch 68/100, Loss: 0.1428\n",
1352
+ "Epoch 69/100\n"
1353
+ ]
1354
+ },
1355
+ {
1356
+ "name": "stderr",
1357
+ "output_type": "stream",
1358
+ "text": [
1359
+ " \r"
1360
+ ]
1361
+ },
1362
+ {
1363
+ "name": "stdout",
1364
+ "output_type": "stream",
1365
+ "text": [
1366
+ "Epoch 69/100, Loss: 0.1457\n",
1367
+ "Epoch 70/100\n"
1368
+ ]
1369
+ },
1370
+ {
1371
+ "name": "stderr",
1372
+ "output_type": "stream",
1373
+ "text": [
1374
+ " \r"
1375
+ ]
1376
+ },
1377
+ {
1378
+ "name": "stdout",
1379
+ "output_type": "stream",
1380
+ "text": [
1381
+ "Epoch 70/100, Loss: 0.1549\n",
1382
+ "Epoch 71/100\n"
1383
+ ]
1384
+ },
1385
+ {
1386
+ "name": "stderr",
1387
+ "output_type": "stream",
1388
+ "text": [
1389
+ " \r"
1390
+ ]
1391
+ },
1392
+ {
1393
+ "name": "stdout",
1394
+ "output_type": "stream",
1395
+ "text": [
1396
+ "Epoch 71/100, Loss: 0.1504\n",
1397
+ "Epoch 72/100\n"
1398
+ ]
1399
+ },
1400
+ {
1401
+ "name": "stderr",
1402
+ "output_type": "stream",
1403
+ "text": [
1404
+ " \r"
1405
+ ]
1406
+ },
1407
+ {
1408
+ "name": "stdout",
1409
+ "output_type": "stream",
1410
+ "text": [
1411
+ "Epoch 72/100, Loss: 0.1455\n",
1412
+ "Epoch 73/100\n"
1413
+ ]
1414
+ },
1415
+ {
1416
+ "name": "stderr",
1417
+ "output_type": "stream",
1418
+ "text": [
1419
+ " \r"
1420
+ ]
1421
+ },
1422
+ {
1423
+ "name": "stdout",
1424
+ "output_type": "stream",
1425
+ "text": [
1426
+ "Epoch 73/100, Loss: 0.1425\n",
1427
+ "Epoch 74/100\n"
1428
+ ]
1429
+ },
1430
+ {
1431
+ "name": "stderr",
1432
+ "output_type": "stream",
1433
+ "text": [
1434
+ " \r"
1435
+ ]
1436
+ },
1437
+ {
1438
+ "name": "stdout",
1439
+ "output_type": "stream",
1440
+ "text": [
1441
+ "Epoch 74/100, Loss: 0.1422\n",
1442
+ "Epoch 75/100\n"
1443
+ ]
1444
+ },
1445
+ {
1446
+ "name": "stderr",
1447
+ "output_type": "stream",
1448
+ "text": [
1449
+ " \r"
1450
+ ]
1451
+ },
1452
+ {
1453
+ "name": "stdout",
1454
+ "output_type": "stream",
1455
+ "text": [
1456
+ "Epoch 75/100, Loss: 0.1421\n",
1457
+ "Epoch 76/100\n"
1458
+ ]
1459
+ },
1460
+ {
1461
+ "name": "stderr",
1462
+ "output_type": "stream",
1463
+ "text": [
1464
+ " \r"
1465
+ ]
1466
+ },
1467
+ {
1468
+ "name": "stdout",
1469
+ "output_type": "stream",
1470
+ "text": [
1471
+ "Epoch 76/100, Loss: 0.1452\n",
1472
+ "Epoch 77/100\n"
1473
+ ]
1474
+ },
1475
+ {
1476
+ "name": "stderr",
1477
+ "output_type": "stream",
1478
+ "text": [
1479
+ " \r"
1480
+ ]
1481
+ },
1482
+ {
1483
+ "name": "stdout",
1484
+ "output_type": "stream",
1485
+ "text": [
1486
+ "Epoch 77/100, Loss: 0.1479\n",
1487
+ "Epoch 78/100\n"
1488
+ ]
1489
+ },
1490
+ {
1491
+ "name": "stderr",
1492
+ "output_type": "stream",
1493
+ "text": [
1494
+ " \r"
1495
+ ]
1496
+ },
1497
+ {
1498
+ "name": "stdout",
1499
+ "output_type": "stream",
1500
+ "text": [
1501
+ "Epoch 78/100, Loss: 0.1371\n",
1502
+ "Epoch 79/100\n"
1503
+ ]
1504
+ },
1505
+ {
1506
+ "name": "stderr",
1507
+ "output_type": "stream",
1508
+ "text": [
1509
+ " \r"
1510
+ ]
1511
+ },
1512
+ {
1513
+ "name": "stdout",
1514
+ "output_type": "stream",
1515
+ "text": [
1516
+ "Epoch 79/100, Loss: 0.1323\n",
1517
+ "Epoch 80/100\n"
1518
+ ]
1519
+ },
1520
+ {
1521
+ "name": "stderr",
1522
+ "output_type": "stream",
1523
+ "text": [
1524
+ " \r"
1525
+ ]
1526
+ },
1527
+ {
1528
+ "name": "stdout",
1529
+ "output_type": "stream",
1530
+ "text": [
1531
+ "Epoch 80/100, Loss: 0.1396\n",
1532
+ "Epoch 81/100\n"
1533
+ ]
1534
+ },
1535
+ {
1536
+ "name": "stderr",
1537
+ "output_type": "stream",
1538
+ "text": [
1539
+ " \r"
1540
+ ]
1541
+ },
1542
+ {
1543
+ "name": "stdout",
1544
+ "output_type": "stream",
1545
+ "text": [
1546
+ "Epoch 81/100, Loss: 0.1373\n",
1547
+ "Epoch 82/100\n"
1548
+ ]
1549
+ },
1550
+ {
1551
+ "name": "stderr",
1552
+ "output_type": "stream",
1553
+ "text": [
1554
+ " \r"
1555
+ ]
1556
+ },
1557
+ {
1558
+ "name": "stdout",
1559
+ "output_type": "stream",
1560
+ "text": [
1561
+ "Epoch 82/100, Loss: 0.1366\n",
1562
+ "Epoch 83/100\n"
1563
+ ]
1564
+ },
1565
+ {
1566
+ "name": "stderr",
1567
+ "output_type": "stream",
1568
+ "text": [
1569
+ " \r"
1570
+ ]
1571
+ },
1572
+ {
1573
+ "name": "stdout",
1574
+ "output_type": "stream",
1575
+ "text": [
1576
+ "Epoch 83/100, Loss: 0.1334\n",
1577
+ "Epoch 84/100\n"
1578
+ ]
1579
+ },
1580
+ {
1581
+ "name": "stderr",
1582
+ "output_type": "stream",
1583
+ "text": [
1584
+ "Epoch Progress: 84%|████████▍ | 101/120 [00:01<00:00, 70.34it/s, Loss=0.133]"
1585
+ ]
1586
+ }
1587
+ ],
1588
+ "source": [
1589
+ "VAE_train(vae, optimizer, loader, epochs, dim_input, save_path=None)"
1590
+ ]
1591
+ },
1592
+ {
1593
+ "cell_type": "code",
1594
+ "execution_count": 278,
1595
+ "id": "3b7f5142-0db4-4ff9-8379-2a1d3db79537",
1596
+ "metadata": {
1597
+ "tags": []
1598
+ },
1599
+ "outputs": [],
1600
+ "source": [
1601
+ "f_test, ferr_test, specz_test = photoz_archive.get_testing_data()"
1602
+ ]
1603
+ },
1604
+ {
1605
+ "cell_type": "code",
1606
+ "execution_count": 279,
1607
+ "id": "0ea2e51f-1879-485e-a0c5-36b564ce5bc2",
1608
+ "metadata": {
1609
+ "tags": []
1610
+ },
1611
+ "outputs": [],
1612
+ "source": [
1613
+ "Ntest=10"
1614
+ ]
1615
+ },
1616
+ {
1617
+ "cell_type": "code",
1618
+ "execution_count": 301,
1619
+ "id": "f2a2896d-cfa1-4978-a403-5a1ac62ddbfc",
1620
+ "metadata": {
1621
+ "tags": []
1622
+ },
1623
+ "outputs": [],
1624
+ "source": [
1625
+ "datain = torch.randn(size=(1, 50)).to(device)\n",
1626
+ "x = vae.encoder(datain)\n",
1627
+ "mu = vae.fc_mu(x)\n",
1628
+ "log_var = vae.fc_logvar(x)\n",
1629
+ "Nsamp=1000"
1630
+ ]
1631
+ },
1632
+ {
1633
+ "cell_type": "code",
1634
+ "execution_count": 303,
1635
+ "id": "e1ee1209-7f4b-40e1-b7b5-a83c3fe8ef75",
1636
+ "metadata": {
1637
+ "tags": []
1638
+ },
1639
+ "outputs": [],
1640
+ "source": [
1641
+ "ppz = np.zeros(shape=(Ntest,Nsamp))\n",
1642
+ "for ii in range(Ntest):\n",
1643
+ " for jj in range(Nsamp):\n",
1644
+ " z =vae.sampling(mu,log_var)\n",
1645
+ " ypred = vae.decode(z.to(device),torch.Tensor(f[ii]).unsqueeze(0).to(device))\n",
1646
+ " ppz[ii,jj] = ypred"
1647
+ ]
1648
+ },
1649
+ {
1650
+ "cell_type": "code",
1651
+ "execution_count": 304,
1652
+ "id": "fec26b65-cdc3-4b11-8fd9-cd502cacfc81",
1653
+ "metadata": {
1654
+ "tags": []
1655
+ },
1656
+ "outputs": [],
1657
+ "source": [
1658
+ "m=9"
1659
+ ]
1660
+ },
1661
+ {
1662
+ "cell_type": "code",
1663
+ "execution_count": 305,
1664
+ "id": "a1e92836-3465-44a1-b554-0de380e5ba16",
1665
+ "metadata": {
1666
+ "tags": []
1667
+ },
1668
+ "outputs": [
1669
+ {
1670
+ "data": {
1671
+ "text/plain": [
1672
+ "(array([ 3., 2., 3., 7., 4., 12., 12., 9., 13., 16., 14., 23., 18.,\n",
1673
+ " 25., 42., 56., 45., 49., 48., 34., 55., 42., 45., 39., 34., 41.,\n",
1674
+ " 25., 33., 37., 26., 24., 21., 22., 27., 18., 19., 12., 12., 4.,\n",
1675
+ " 8., 6., 3., 6., 2., 2., 0., 1., 0., 0., 1.]),\n",
1676
+ " array([0.56738353, 0.57165519, 0.57592686, 0.58019852, 0.58447019,\n",
1677
+ " 0.58874185, 0.59301352, 0.59728518, 0.60155684, 0.60582851,\n",
1678
+ " 0.61010017, 0.61437184, 0.6186435 , 0.62291517, 0.62718683,\n",
1679
+ " 0.6314585 , 0.63573016, 0.64000183, 0.64427349, 0.64854516,\n",
1680
+ " 0.65281682, 0.65708848, 0.66136015, 0.66563181, 0.66990348,\n",
1681
+ " 0.67417514, 0.67844681, 0.68271847, 0.68699014, 0.6912618 ,\n",
1682
+ " 0.69553347, 0.69980513, 0.7040768 , 0.70834846, 0.71262012,\n",
1683
+ " 0.71689179, 0.72116345, 0.72543512, 0.72970678, 0.73397845,\n",
1684
+ " 0.73825011, 0.74252178, 0.74679344, 0.75106511, 0.75533677,\n",
1685
+ " 0.75960844, 0.7638801 , 0.76815176, 0.77242343, 0.77669509,\n",
1686
+ " 0.78096676]),\n",
1687
+ " <BarContainer object of 50 artists>)"
1688
+ ]
1689
+ },
1690
+ "execution_count": 305,
1691
+ "metadata": {},
1692
+ "output_type": "execute_result"
1693
+ },
1694
+ {
1695
+ "data": {
1696
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAGcCAYAAABwemJAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZaUlEQVR4nO3df2jdd6H/8VeaZRmdTcTqXFPjTcNIZfqHl6t1vVukDQPFzjp/lSIuot474x2KFvS27OJl3N51+IeuVEEqiIx5Lzi1dNJpB9LZFg9YmNoi+3GrSW/sZnb3g5Pp1iztOfeP+22+i2td0px3mpM+HnDYcvI5n7wPbz7Nk/f5fPJpqdfr9QAAFLLkYg8AAFjcxAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgqMsu9gCSpFar5YknnsiyZcvS0tJysYcDAMxAvV7P888/n66urixZcv71iwURG0888US6u7sv9jAAgAswOjqaN73pTef9/oKIjWXLliX5v8F2dHRc5NEAADMxPj6e7u7uqd/j57MgYuPsRycdHR1iAwCazKudAuEEUQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDACjqsos9ALiYerbue9VtRu7aMA8jAVi8rGwAAEWJDQCgKLEBABQlNgCAosQGAFCUq1GgybiCBmg2VjYAgKLEBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQ1Jxi44knnmjUOACARWpWsVGv19PX15eWlpa0tLTk4x//eJJkeHg4Q0ND2b17dwYHB3PixIkigwUAms9ls9n4Jz/5ST7/+c/nuuuuS5KsWrUqtVotGzduzM6dOzMwMJBVq1Zl8+bNqVQqRQYMADSXWa1sfOMb30hra2uuuuqqvOMd78jy5cuzf//+HD9+PP39/UmSgYGBHD16NEeOHCkyYACgucw4Np5//vlMTEzkX/7lX7Jq1ap87nOfS71eT6VSSW9vb9ra2pIkra2t6e3tzYEDB867r4mJiYyPj097AACL04w/Rlm2bFl+9rOfZXJyMt/61rfyxS9+Mddcc03GxsbS0dExbdvOzs6cPHnyvPvasWNH7rjjjgsfNQDQNGZ9NUpbW1s+97nPZevWrfmP//iPtLW1Ta1qnFWr1VKr1c67j23btqVarU49RkdHZz9yAKApXPClrx/4wAdSrVazYsWKV3wMUq1Ws3LlyvO+tr29PR0dHdMeAMDidMGxcebMmaxevTrr1q3L8PBw6vV6kmRycjIjIyNZv359wwYJADSvGcfGoUOHcu+9905Fxe7du/OlL30pa9euTVdXVw4dOpQkOXjwYHp6erJmzZoyIwYAmsqMTxAdHR3NF77whfznf/5nrrvuugwODuaGG25Ikuzduzfbt2/PsWPHUqlUsmfPnrS0tBQbNADQPGYcGx/72MfysY997Jzf6+vryz333JMkue222xozMmgiPVv3veo2I3dtmIeRACw8bsQGABQlNgCAosQGAFCU2AAAihIbAEBRs7rFPHDhXLECXKqsbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoKjLLvYAYKHr2brvYg+hiJm8r5G7NszDSIDFzsoGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKuuxiDwBK6dm672IP4aK5lN87sPBY2QAAihIbAEBRYgMAKEpsAABFiQ0AoChXowDFzeTqmJG7NszDSICLwcoGAFDUBcXGCy+8kGuvvTYjIyNJkuHh4QwNDWX37t0ZHBzMiRMnGjlGAKCJXdDHKLt27cojjzySJKnVatm4cWN27tyZgYGBrFq1Kps3b06lUmnoQAGA5jTrlY29e/dm/fr1U1/v378/x48fT39/f5JkYGAgR48ezZEjRxo3SgCgac0qNv77v/87Tz75ZNasWTP1XKVSSW9vb9ra2pIkra2t6e3tzYEDB867n4mJiYyPj097AACL04xj48yZM/n2t7+dW2+9ddrzY2Nj6ejomPZcZ2dnTp48ed597dixI52dnVOP7u7uWQ4bAGgWM46Nb37zm/nMZz6TJUumv6StrW1qVeOsWq2WWq123n1t27Yt1Wp16jE6OjrLYQMAzWLGJ4ju2rUrX/7yl6c9t3r16tRqtbz1rW+d9ny1Ws3KlSvPu6/29va0t7fPcqgAQDOacWz813/917SvW1pa8thjj+XkyZN53/vel3q9npaWlkxOTmZkZGTaSaQAwKVrzn/Ua+3atenq6sqhQ4eSJAcPHkxPT8+0k0gBgEvXnP9c+ZIlS7J3795s3749x44dS6VSyZ49e9LS0tKI8QEATe6CY6Ner0/9f19fX+65554kyW233Tb3UQEAi4YbsQHn5QZqQCO4ERsAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBR7o0CLCru5wILj5UNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUddnFHgDw//Vs3XexhzBrzThmYH5Z2QAAihIbAEBRYgMAKEpsAABFiQ0AoChXowBNw5Uv0JysbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAipp1bPzqV7/KDTfckNe97nW58cYb8/TTTydJhoeHMzQ0lN27d2dwcDAnTpxo+GABgOYzq9g4depUfvjDH+bBBx/M6OhoXnjhhXzta19LrVbLxo0bs2nTptx666255ZZbsnnz5lJjBgCayKxio1qt5itf+UqWLl2aK6+8Mv39/VmyZEn279+f48ePp7+/P0kyMDCQo0eP5siRI0UGDQA0j1nFxhvf+MZcfvnlSZKXXnopf/zjH/PFL34xlUolvb29aWtrS5K0tramt7c3Bw4cOOd+JiYmMj4+Pu0BACxOF3SC6AMPPJDrrrsuBw4cyG9/+9uMjY2lo6Nj2jadnZ05efLkOV+/Y8eOdHZ2Tj26u7svZBgAQBO4oNh4z3vekx/84Af5+7//+3z84x9PW1vb1KrGWbVaLbVa7Zyv37ZtW6rV6tRjdHT0QoYBADSByy7kRWc/JvnOd76T5cuX5w1veMMrPgqpVqtZuXLlOV/f3t6e9vb2C/nRAECTmdPf2Vi6dGle//rXZ926dRkeHk69Xk+STE5OZmRkJOvXr2/IIAGA5jWr2HjmmWfy4x//eCoqfv7zn+eWW25Jf39/urq6cujQoSTJwYMH09PTkzVr1jR+xABAU5nVxyjDw8P5h3/4h6xevTof+chH8prXvCb//u//npaWluzduzfbt2/PsWPHUqlUsmfPnrS0tJQaNwDQJGYVG+94xzsyNjZ2zu/19fXlnnvuSZLcdtttcx8ZALAouDcKAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDAChqVjdiA6Dxerbue9VtRu7aMA8jgTKsbAAARYkNAKAosQEAFCU2AICixAYAUJSrUYBLjqs/YH5Z2QAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAU5dJXmtJMLl2kuZhTWLysbAAARYkNAKAosQEAFCU2AICixAYAUJSrUQDOwc3aoHGsbAAARYkNAKAosQEAFCU2AICixAYAUJSrUZg3zu4HuDRZ2QAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAU5dJXgIJmcsk3LHZWNgCAosQGAFCU2AAAihIbAEBRYgMAKMrVKAAXyJUmMDNWNgCAomYVG/fff39Wr16djo6OfPjDH86zzz6bJBkeHs7Q0FB2796dwcHBnDhxoshgAYDmM+PY+P3vf599+/blRz/6Ub773e/moYceyj//8z+nVqtl48aN2bRpU2699dbccsst2bx5c8kxAwBNZMbnbBw+fDi7du3K5Zdfnre+9a05evRo7rvvvuzfvz/Hjx9Pf39/kmRgYCA333xzjhw5kne+853FBg4ANIcZr2wMDg7m8ssvn/r6jW98Y9785jenUqmkt7c3bW1tSZLW1tb09vbmwIED593XxMRExsfHpz0AgMXpgk8Qffjhh/OZz3wmY2Nj6ejomPa9zs7OnDx58ryv3bFjRzo7O6ce3d3dFzoMAGCBu6DYePLJJ3P69OncfPPNaWtrm1rVOKtWq6VWq5339du2bUu1Wp16jI6OXsgwAIAmMOu/s3HmzJncfffd2bVrV5JkxYoVOXz48LRtqtVqVq5ced59tLe3p729fbY/GgBoQrNe2fj617+eLVu25DWveU2S5IYbbsjw8HDq9XqSZHJyMiMjI1m/fn1jRwoANKVZrWzcfffd6evry3PPPZfnnnsuv//973P69Ol0dXXl0KFDefe7352DBw+mp6cna9asKTVmAKCJzDg2vv/972fLli1TKxhJsnTp0vzxj3/M3r17s3379hw7diyVSiV79uxJS0tLkQEDAM1lxrGxadOmbNq06ZzfW7ZsWe65554kyW233daYkQEwKzO5V8vIXRvmYSQwnXujAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIqa9Z8rh5JmcukeXIocGzQzKxsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFuTcKr2om92QYuWvDPIwEgGZkZQMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFOVGbDTETG7WBsClycoGAFCU2AAAihIbAEBRYgMAKEpsAABFuRrlEucqEgBKs7IBABQlNgCAosQGAFCU2AAAihIbAEBRrkZZgBp1hcjIXRsash9g8fDvCxeDlQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDACjqgmPjxRdfTLVabeRYAIBFaNaxUavV8t3vfjd9fX351a9+NfX88PBwhoaGsnv37gwODubEiRMNHSgA0Jxm/RdEn3766axfvz5/+MMfpp6r1WrZuHFjdu7cmYGBgaxatSqbN29OpVJp6GABgOYz65WNq666Kn/zN38z7bn9+/fn+PHj6e/vT5IMDAzk6NGjOXLkSGNGCQA0rYacIFqpVNLb25u2trYkSWtra3p7e3PgwIFzbj8xMZHx8fFpDwBgcWpIbIyNjaWjo2Pac52dnTl58uQ5t9+xY0c6OzunHt3d3Y0YBgCwADUkNtra2qZWNc6q1Wqp1Wrn3H7btm2pVqtTj9HR0UYMAwBYgBpyi/kVK1bk8OHD056rVqtZuXLlObdvb29Pe3t7I340ALDANWRlY926dRkeHk69Xk+STE5OZmRkJOvXr2/E7gGAJnZBsfGXH4+sXbs2XV1dOXToUJLk4MGD6enpyZo1a+Y+QgCgqc36Y5T/+Z//ybe//e0kyb333purr746b3nLW7J3795s3749x44dS6VSyZ49e9LS0tLwAQMAzaWlfvazj4tofHw8nZ2dqVarr7iq5VLUs3XfxR4CwF81cteGiz0EFoCZ/v52IzYAoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUQ35c+UA8Jdmchm/S2gvDVY2AICixAYAUJTYAACKEhsAQFFiAwAoytUoDeTMawB4JSsbAEBRYgMAKEpsAABFiQ0AoCixAQAU5WoUAC6aRl3F52rAhc3KBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoyo3Y5tlMbhYEsND5t4zZsLIBABQlNgCAosQGAFCU2AAAihIbAEBRi/5qlJmcMT1y14aG7AeAxvPvb/OzsgEAFCU2AICixAYAUJTYAACKEhsAQFGL/mqUmXCmM8Di16h/62dyBSPTWdkAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFOXSVwBosEbdBHSh/awLZWUDACiqYbExPDycoaGh7N69O4ODgzlx4kSjdg0ANLGGfIxSq9WycePG7Ny5MwMDA1m1alU2b96cSqXSiN0DAE2sISsb+/fvz/Hjx9Pf358kGRgYyNGjR3PkyJFG7B4AaGINWdmoVCrp7e1NW1tbkqS1tTW9vb05cOBA3vnOd75i+4mJiUxMTEx9Xa1WkyTj4+ONGM40tYkXGr5PAC5dM/ldNZPfPY36nTefP+t8+63X6391u4bExtjYWDo6OqY919nZmZMnT55z+x07duSOO+54xfPd3d2NGA4AFNN598Laz0L4Wc8//3w6OzvP+/2GxEZbW9vUqsZZtVottVrtnNtv27YtW7Zsmbbts88+m+XLl6elpaURQ+I8xsfH093dndHR0VcEIguHeVr4zFFzME9l1ev1PP/88+nq6vqr2zUkNlasWJHDhw9Pe65arWblypXn3L69vT3t7e3Tnnvta1/biKEwQx0dHQ68JmCeFj5z1BzMUzl/bUXjrIacILpu3boMDw9PfWYzOTmZkZGRrF+/vhG7BwCaWENiY+3atenq6sqhQ4eSJAcPHkxPT0/WrFnTiN0DAE2sIR+jLFmyJHv37s327dtz7NixVCqV7Nmzx/kXC1B7e3v+9V//9RUfY7GwmKeFzxw1B/O0MLTUX+16FQCAOXBvFACgKLEBABQlNgCAohpygijNZXJyMt/73vfy7LPP5vrrr8+73vWuiz0kzmEm81Sv1/Pkk0++6h/UAf46x1JZVjYWieHh4QwNDWX37t0ZHBzMiRMnzrnd2NhYrr/++pw6dSpbtmyZ9gvs7rvvzp133pnbb789X/va1+Zr6JeURszTvffem5aWlrS0tGTJkiU5fvz4fA3/kjCTOfrCF74wNQdnH5s2bZr6vmOpvEbMk2Np/ljZWARqtVo2btyYnTt3ZmBgIKtWrcrmzZtTqVSmbTc5OZmbbropN910U4aGhqZ977777suPfvSjHDx4MEly/fXX59prr8173/veeXsfi10j5ilJHnrooak7Kl9xxRV529veNi/jvxTMZI4mJydz5syZPProo1OXU37zm9+cmgfHUnmNmKfEsTSv6jS9Bx54oH7FFVfUX3rppXq9Xq+fPn26vnTp0vovf/nLadt961vfqnd2dk5t93Jr1qyp/9u//dvU13feeWf9fe97X9mBX2IaMU+/+MUv6jfeeGP9wQcfrE9OTs7LuC8lM5mjP/3pT/Xx8fFpr+vv768/9dRT9XrdsTQfGjFPjqX55WOURaBSqaS3t3fqZnitra3p7e3NgQMHpm33ve99LytWrMiWLVvy9re/PR/84Afz7LPP5qWXXsrDDz+c1atXT23b19f3itczN3OdpyT59a9/naeeeirvec97cs011+Thhx+e9/exmM1kjq688sosW7Zs6uunnnoqSfKGN7zBsTRP5jpPiWNpvomNRWBsbOwVNxjq7OzMyZMnpz139OjRfPSjH82uXbty5MiRPP3009m6dWueeeaZnD59eto+Ojs78+KLL+a5556bl/dwKZjrPCXJZz/72fzmN7/JI488kquvvjo33XRTXnzxxXl7D4vdTOfo5e6///5s2LAhSRxL82Su85Q4luab2FgE2trapgr/rFqtllqtNu25F198MTfccMPUaz7xiU9k3759U699+T7OvvYv98GFm+s8vdzq1atz//3359SpU3nooYeKjvtSMtM5erm9e/fm/e9//9TrX/7fs69/+X+Zu7nO08s5luaH2FgEVqxYkfHx8WnPVavVrFy5ctpzV199df785z9Pfd3d3Z3nnnsuy5cvz+WXXz5tH9VqNVdccUWWL19edvCXkLnO01+66qqrsnbt2lSr1TIDvgTNdI7O+vOf/5zh4eFce+21SeJYmidznae/5FgqT2wsAuvWrcvw8HDq/+82N5OTkxkZGcn69eunbXf99ddPu7Tr1KlT6enpSUtLS9797nfnd7/73dT3Hn/88axbt25exn+pmOs8ncuZM2emnR/A3Mx0js7av39/brzxxqmvHUvzY67zdC6OpbLExiKwdu3adHV15dChQ0mSgwcPpqenJ2vWrMkdd9yRY8eOJUn+8R//MT/4wQ+mXnf48OF8+tOfTpJ88pOfnLZU/9Of/jSf+tSn5vFdLH5znafTp0/nq1/9aoaHh5MkjzzySNrb2/O3f/u38/9mFqmZztFZ51qadyyVN9d5cizNP3d9XSQef/zxbN++Pe9617tSqVTyla98JX19ffm7v/u73H777fnQhz6U5P/+2NBjjz2W7u7uPPPMM/nqV7+a1tbWJMmdd96ZU6dO5cyZM1m6dGluv/32i/mWFqW5zNPp06dz44035tFHH83Q0FA6OjryT//0T7nyyisv8rtaXGY6R2fOnElfX18effTRV5w/4Fgqby7zNDEx4ViaZ2IDACjKxygAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABF/S+KFwdib/9OrgAAAABJRU5ErkJggg==\n",
1697
+ "text/plain": [
1698
+ "<Figure size 640x480 with 1 Axes>"
1699
+ ]
1700
+ },
1701
+ "metadata": {},
1702
+ "output_type": "display_data"
1703
+ }
1704
+ ],
1705
+ "source": [
1706
+ "plt.hist(ppz[m], bins =50)"
1707
+ ]
1708
+ },
1709
+ {
1710
+ "cell_type": "code",
1711
+ "execution_count": 306,
1712
+ "id": "a9f7342a-4b24-48bf-b4dc-3b74380fa042",
1713
+ "metadata": {
1714
+ "tags": []
1715
+ },
1716
+ "outputs": [
1717
+ {
1718
+ "data": {
1719
+ "text/plain": [
1720
+ "0.6869"
1721
+ ]
1722
+ },
1723
+ "execution_count": 306,
1724
+ "metadata": {},
1725
+ "output_type": "execute_result"
1726
+ }
1727
+ ],
1728
+ "source": [
1729
+ "specz[m]"
1730
+ ]
1731
+ },
1732
+ {
1733
+ "cell_type": "code",
1734
+ "execution_count": 284,
1735
+ "id": "b0d9577b-5534-49be-8510-2e2ee65d7dce",
1736
+ "metadata": {
1737
+ "tags": []
1738
+ },
1739
+ "outputs": [],
1740
+ "source": [
1741
+ "OVERFITTING? DIFFERENCE TRAIN TEST? CHECK!"
1742
+ ]
1743
+ },
1744
+ {
1745
+ "cell_type": "code",
1746
+ "execution_count": 259,
1747
+ "id": "21e8e786-5cf9-44f4-b6a7-e8fbb0d36d44",
1748
+ "metadata": {
1749
+ "tags": []
1750
+ },
1751
+ "outputs": [],
1752
+ "source": []
1753
+ },
1754
+ {
1755
+ "cell_type": "code",
1756
+ "execution_count": 266,
1757
+ "id": "49174198-d5e3-490d-b448-e509f07ac30f",
1758
+ "metadata": {
1759
+ "tags": []
1760
+ },
1761
+ "outputs": [
1762
+ {
1763
+ "data": {
1764
+ "text/plain": [
1765
+ "tensor([1.0001, 1.0000, 1.0001, 1.0001, 0.9999, 1.0000, 1.0000, 1.0001, 0.9999,\n",
1766
+ " 1.0000], device='cuda:0', grad_fn=<ExpBackward0>)"
1767
+ ]
1768
+ },
1769
+ "execution_count": 266,
1770
+ "metadata": {},
1771
+ "output_type": "execute_result"
1772
+ }
1773
+ ],
1774
+ "source": [
1775
+ "torch.exp(log_var[0])"
1776
+ ]
1777
+ },
1778
+ {
1779
+ "cell_type": "code",
1780
+ "execution_count": 267,
1781
+ "id": "f1248322-b424-4855-bc8b-ce8af1fcb275",
1782
+ "metadata": {
1783
+ "tags": []
1784
+ },
1785
+ "outputs": [
1786
+ {
1787
+ "data": {
1788
+ "text/plain": [
1789
+ "tensor([-1.7762e-05, -3.3602e-06, -8.1182e-05, -1.8381e-05, 8.2459e-05,\n",
1790
+ " 2.9923e-06, 1.5706e-04, 2.2795e-04, -1.3318e-05, -1.1017e-05],\n",
1791
+ " device='cuda:0', grad_fn=<SelectBackward0>)"
1792
+ ]
1793
+ },
1794
+ "execution_count": 267,
1795
+ "metadata": {},
1796
+ "output_type": "execute_result"
1797
+ }
1798
+ ],
1799
+ "source": [
1800
+ "mu[0]"
1801
+ ]
1802
+ },
1803
+ {
1804
+ "cell_type": "code",
1805
+ "execution_count": null,
1806
+ "id": "d14b8ae2-6bf7-47da-9725-57cc3f2b6cca",
1807
+ "metadata": {},
1808
+ "outputs": [],
1809
+ "source": []
1810
+ }
1811
+ ],
1812
+ "metadata": {
1813
+ "kernelspec": {
1814
+ "display_name": "DLenv2",
1815
+ "language": "python",
1816
+ "name": "dlenv2"
1817
+ },
1818
+ "language_info": {
1819
+ "codemirror_mode": {
1820
+ "name": "ipython",
1821
+ "version": 3
1822
+ },
1823
+ "file_extension": ".py",
1824
+ "mimetype": "text/x-python",
1825
+ "name": "python",
1826
+ "nbconvert_exporter": "python",
1827
+ "pygments_lexer": "ipython3",
1828
+ "version": "3.9.7"
1829
+ }
1830
+ },
1831
+ "nbformat": 4,
1832
+ "nbformat_minor": 5
1833
+ }
notebooks/.ipynb_checkpoints/CVAE-checkpoint.ipynb ADDED
@@ -0,0 +1,1833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 84,
6
+ "id": "10a00e46-827a-4278-a715-99526591a0a7",
7
+ "metadata": {
8
+ "tags": []
9
+ },
10
+ "outputs": [],
11
+ "source": [
12
+ "import torch.nn as nn\n",
13
+ "import torch\n",
14
+ "class CondVAE(nn.Module):\n",
15
+ " def __init__(self, dim_input, latent_dim=10, context_vector_size=6):\n",
16
+ " super(CondVAE, self).__init__()\n",
17
+ " \n",
18
+ " self.latent_dim = latent_dim\n",
19
+ "\n",
20
+ " # Encoder\n",
21
+ " self.encoder = nn.Sequential(\n",
22
+ " nn.Linear(in_features=dim_input, out_features=100),\n",
23
+ " nn.ReLU(),\n",
24
+ " nn.Linear(in_features=100, out_features=200),\n",
25
+ " nn.ReLU(),\n",
26
+ " nn.Linear(in_features=200, out_features=300),\n",
27
+ " nn.ReLU(),\n",
28
+ " nn.Linear(in_features=300, out_features=200),\n",
29
+ " nn.ReLU(),\n",
30
+ " nn.Linear(in_features=200, out_features=100),\n",
31
+ " nn.ReLU(),\n",
32
+ " nn.Flatten()\n",
33
+ " )\n",
34
+ " \n",
35
+ " self.fc_mu = nn.Linear(100, latent_dim)\n",
36
+ " self.fc_logvar = nn.Linear(100, latent_dim)\n",
37
+ "\n",
38
+ " # Decoder\n",
39
+ " self.decoder = nn.Sequential(\n",
40
+ " nn.Linear(in_features=latent_dim+6, out_features=100),\n",
41
+ " nn.ReLU(),\n",
42
+ " nn.Linear(in_features=100, out_features=200),\n",
43
+ " nn.ReLU(),\n",
44
+ " nn.Linear(in_features=200, out_features=300),\n",
45
+ " nn.ReLU(),\n",
46
+ " nn.Linear(in_features=300, out_features=200),\n",
47
+ " nn.ReLU(),\n",
48
+ " nn.Linear(in_features=200, out_features=100),\n",
49
+ " nn.ReLU(),\n",
50
+ " nn.Linear(in_features=100, out_features=1),\n",
51
+ " )\n",
52
+ "\n",
53
+ " def encode(self, x):\n",
54
+ " x = self.encoder(x)\n",
55
+ " mu = self.fc_mu(x)\n",
56
+ " log_var = self.fc_logvar(x)\n",
57
+ "\n",
58
+ " return mu, log_var\n",
59
+ " \n",
60
+ " def decode(self, z, context_vector):\n",
61
+ " # Concatenate the sampling (latent distribution) + embedding -> samples conditioned on both the input data and the specified label\n",
62
+ " #print(properties.shape, z.shape)\n",
63
+ " zcomb = torch.concat((z, context_vector), 1)\n",
64
+ " #print(zcomb.shape)\n",
65
+ " \n",
66
+ " return self.decoder(zcomb) \n",
67
+ " \n",
68
+ " def sampling(self, mu, log_var):\n",
69
+ " # calculate standard deviation\n",
70
+ " std = log_var.mul(0.5).exp_()\n",
71
+ " \n",
72
+ " # create noise tensor of same size as std to add to the latent vector\n",
73
+ " eps = torch.cuda.FloatTensor(std.size()).normal_()\n",
74
+ " \n",
75
+ " # multiply eps with std to scale the random noise according to the learned distribution + add combined\n",
76
+ " return eps.mul(std).add_(mu) # return z sample \n",
77
+ "\n",
78
+ " def forward(self, x, context_vector):\n",
79
+ " mu, log_var = self.encode(x)\n",
80
+ " z = self.sampling(mu, log_var)\n",
81
+ " #print(z.shape)\n",
82
+ "\n",
83
+ " return self.decode(z, context_vector), mu, log_var\n"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 268,
89
+ "id": "8bbbe719-f9a3-4ace-ac4c-ed29ec4f9486",
90
+ "metadata": {
91
+ "tags": []
92
+ },
93
+ "outputs": [],
94
+ "source": [
95
+ "import tqdm\n",
96
+ "import torch\n",
97
+ "import torch.nn as nn\n",
98
+ "\n",
99
+ "def condvae_loss(pred, label, mu, logvar):\n",
100
+ " \"\"\"\n",
101
+ " Calculate the conditional Variational Autoencoder (cVAE) loss.\n",
102
+ "\n",
103
+ " This function computes the cVAE loss, which consists of two components:\n",
104
+ " - Reconstruction loss: Measures the discrepancy between the reconstructed\n",
105
+ " data and the original input.\n",
106
+ " - KL divergence loss: Quantifies the difference between the learned latent\n",
107
+ " distribution and the desired prior distribution (Gaussian).\n",
108
+ "\n",
109
+ " Args:\n",
110
+ " recon_x (torch.Tensor): Reconstructed data from the VAE.\n",
111
+ " x (torch.Tensor): Original input data.\n",
112
+ " mu (torch.Tensor): Latent variable mean.\n",
113
+ " logvar (torch.Tensor): Logarithm of latent variable variance.\n",
114
+ "\n",
115
+ " Returns:\n",
116
+ " torch.Tensor: Computed cVAE loss.\n",
117
+ " \"\"\"\n",
118
+ " \n",
119
+ " # MSE loss element-wise and sums up the individual losses\n",
120
+ " cde_loss = nn.MSELoss(reduction='mean')(pred, label)\n",
121
+ " \n",
122
+ " # quantifies the difference between the learned latent distribution and the desired prior distribution (Gaussian)\n",
123
+ " kl_divergence = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())\n",
124
+ " \n",
125
+ " return cde_loss + kl_divergence\n",
126
+ "\n",
127
+ "def VAE_trainEpoch(model, optimizer, train_loader, dim_in=100):\n",
128
+ " \"\"\"\n",
129
+ " Train a Variational Autoencoder (VAE) for one epoch.\n",
130
+ "\n",
131
+ " This function trains a VAE for one epoch using the provided data loader.\n",
132
+ " It calculates the cVAE loss, performs backpropagation, and updates the model's parameters.\n",
133
+ "\n",
134
+ " Args:\n",
135
+ " model (nn.Module): VAE model to be trained.\n",
136
+ " optimizer (torch.optim.Optimizer): Optimizer for updating model parameters.\n",
137
+ " train_loader (DataLoader): DataLoader containing training data.\n",
138
+ " dim_in (int): Dimensionality of the input noise.\n",
139
+ "\n",
140
+ " Returns:\n",
141
+ " float: Average loss for the epoch.\n",
142
+ " \"\"\"\n",
143
+ " model = model.train()\n",
144
+ " device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
145
+ " total_loss = 0\n",
146
+ "\n",
147
+ " progress_bar = tqdm.tqdm(train_loader, desc=\"Epoch Progress\", leave=False)\n",
148
+ " for context_vector, label in progress_bar:\n",
149
+ " context_vector = context_vector.to(device)\n",
150
+ " datain = torch.randn(size=(len(context_vector), dim_in)).to(device)\n",
151
+ " label = label.unsqueeze(1).cuda()\n",
152
+ " optimizer.zero_grad()\n",
153
+ "\n",
154
+ " recon_batch, mu, log_var = model(datain, context_vector)\n",
155
+ " loss = condvae_loss(recon_batch, label, mu, log_var)\n",
156
+ "\n",
157
+ " loss.backward()\n",
158
+ " optimizer.step()\n",
159
+ "\n",
160
+ " total_loss += loss.item()\n",
161
+ " progress_bar.set_postfix({\"Loss\": total_loss / (progress_bar.n + 1)})\n",
162
+ "\n",
163
+ " return total_loss / len(train_loader)\n",
164
+ "\n",
165
+ "def VAE_train(model, optimizer, train_loader, epochs, dim_in, save_path=None):\n",
166
+ " \"\"\"\n",
167
+ " Train a Variational Autoencoder (VAE) for multiple epochs.\n",
168
+ "\n",
169
+ " This function trains a VAE for the specified number of epochs using the provided data loader.\n",
170
+ " It prints the epoch progress and the computed loss for each epoch.\n",
171
+ "\n",
172
+ " Args:\n",
173
+ " model (nn.Module): VAE model to be trained.\n",
174
+ " optimizer (torch.optim.Optimizer): Optimizer for updating model parameters.\n",
175
+ " train_loader (DataLoader): DataLoader containing training data.\n",
176
+ " epochs (int): Number of epochs for training.\n",
177
+ "\n",
178
+ " Returns:\n",
179
+ " None\n",
180
+ " \"\"\"\n",
181
+ " for epoch in range(epochs):\n",
182
+ " print(f\"Epoch {epoch + 1}/{epochs}\")\n",
183
+ " epoch_loss = VAE_trainEpoch(model, optimizer, train_loader, dim_in)\n",
184
+ " print(f\"Epoch {epoch + 1}/{epochs}, Loss: {epoch_loss:.4f}\")\n",
185
+ " \n",
186
+ " if save_path!=None:\n",
187
+ " torch.save(model, save_path)\n",
188
+ "\n"
189
+ ]
190
+ },
191
+ {
192
+ "cell_type": "code",
193
+ "execution_count": 269,
194
+ "id": "11aaa0e9-e745-483a-887d-d851e791f8e4",
195
+ "metadata": {
196
+ "tags": []
197
+ },
198
+ "outputs": [],
199
+ "source": [
200
+ "import numpy as np\n",
201
+ "import pandas as pd\n",
202
+ "from astropy.io import fits\n",
203
+ "import os\n",
204
+ "from astropy.table import Table\n",
205
+ "from scipy.spatial import KDTree\n",
206
+ "\n",
207
+ "import matplotlib.pyplot as plt\n",
208
+ "\n",
209
+ "from IPython.display import Image\n",
210
+ "from IPython.core.display import HTML "
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": 270,
216
+ "id": "0814440a-e341-4540-bfba-466b74b9873d",
217
+ "metadata": {
218
+ "tags": []
219
+ },
220
+ "outputs": [],
221
+ "source": [
222
+ "import torch\n",
223
+ "from torch.utils.data import DataLoader, dataset, TensorDataset\n",
224
+ "from torch import nn, optim\n",
225
+ "from torch.optim import lr_scheduler"
226
+ ]
227
+ },
228
+ {
229
+ "cell_type": "code",
230
+ "execution_count": 271,
231
+ "id": "8ecf9b60-bd03-4fa6-9516-c767d04b2071",
232
+ "metadata": {
233
+ "tags": []
234
+ },
235
+ "outputs": [],
236
+ "source": [
237
+ "import sys\n",
238
+ "sys.path.append('../insight')\n",
239
+ "from archive import archive \n",
240
+ "from insight_arch import Photoz_network\n",
241
+ "from insight import Insight_module\n",
242
+ "from utils import sigma68, nmad, plot_photoz_estimates\n",
243
+ "from scipy import stats"
244
+ ]
245
+ },
246
+ {
247
+ "cell_type": "code",
248
+ "execution_count": 272,
249
+ "id": "1277097d-e4bb-4bdd-b1f4-bccc88be0169",
250
+ "metadata": {
251
+ "tags": []
252
+ },
253
+ "outputs": [],
254
+ "source": [
255
+ "from matplotlib import rcParams\n",
256
+ "rcParams[\"mathtext.fontset\"] = \"stix\"\n",
257
+ "rcParams[\"font.family\"] = \"STIXGeneral\"\n",
258
+ "parent_dir = '/data/astro/scratch/lcabayol/Euclid/NNphotozs/Euclid_EXT_MER_PHZ_DC2_v1.5'"
259
+ ]
260
+ },
261
+ {
262
+ "cell_type": "code",
263
+ "execution_count": 273,
264
+ "id": "5d2d3713-ff7f-4f16-860f-cf5ff42801b1",
265
+ "metadata": {
266
+ "tags": []
267
+ },
268
+ "outputs": [],
269
+ "source": [
270
+ "photoz_archive = archive(path = parent_dir, Qz_cut=1)\n",
271
+ "f, ferr, specz, specqz = photoz_archive.get_training_data()"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": 274,
277
+ "id": "45af2d9e-1160-4859-9888-f5daf62df84a",
278
+ "metadata": {
279
+ "tags": []
280
+ },
281
+ "outputs": [],
282
+ "source": [
283
+ "dset = TensorDataset(torch.Tensor(f),torch.Tensor(specz))\n",
284
+ "loader = DataLoader(dset, batch_size=100, shuffle=True)"
285
+ ]
286
+ },
287
+ {
288
+ "cell_type": "code",
289
+ "execution_count": 275,
290
+ "id": "dad8733c-c36a-4e86-b32d-41c244ba6259",
291
+ "metadata": {
292
+ "tags": []
293
+ },
294
+ "outputs": [],
295
+ "source": [
296
+ "dim_input=50\n",
297
+ "latent_dim=10\n",
298
+ "context_vector_dim=6\n",
299
+ "epochs=100\n",
300
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n"
301
+ ]
302
+ },
303
+ {
304
+ "cell_type": "code",
305
+ "execution_count": 276,
306
+ "id": "ef0b6560-dd3d-4b9d-a14c-43bf9338f7a4",
307
+ "metadata": {
308
+ "tags": []
309
+ },
310
+ "outputs": [],
311
+ "source": [
312
+ "vae = CondVAE(dim_input, latent_dim=latent_dim, context_vector_size=6).to(device)\n",
313
+ "optimizer = optim.Adam(vae.parameters(), lr=1e-3, weight_decay=1e-4)\n"
314
+ ]
315
+ },
316
+ {
317
+ "cell_type": "code",
318
+ "execution_count": null,
319
+ "id": "dd04d484-d14d-488d-a640-180fb6ab1001",
320
+ "metadata": {
321
+ "collapsed": true,
322
+ "jupyter": {
323
+ "outputs_hidden": true
324
+ },
325
+ "tags": []
326
+ },
327
+ "outputs": [
328
+ {
329
+ "name": "stdout",
330
+ "output_type": "stream",
331
+ "text": [
332
+ "Epoch 1/100\n"
333
+ ]
334
+ },
335
+ {
336
+ "name": "stderr",
337
+ "output_type": "stream",
338
+ "text": [
339
+ " \r"
340
+ ]
341
+ },
342
+ {
343
+ "name": "stdout",
344
+ "output_type": "stream",
345
+ "text": [
346
+ "Epoch 1/100, Loss: 70.1670\n",
347
+ "Epoch 2/100\n"
348
+ ]
349
+ },
350
+ {
351
+ "name": "stderr",
352
+ "output_type": "stream",
353
+ "text": [
354
+ " \r"
355
+ ]
356
+ },
357
+ {
358
+ "name": "stdout",
359
+ "output_type": "stream",
360
+ "text": [
361
+ "Epoch 2/100, Loss: 5.8741\n",
362
+ "Epoch 3/100\n"
363
+ ]
364
+ },
365
+ {
366
+ "name": "stderr",
367
+ "output_type": "stream",
368
+ "text": [
369
+ " \r"
370
+ ]
371
+ },
372
+ {
373
+ "name": "stdout",
374
+ "output_type": "stream",
375
+ "text": [
376
+ "Epoch 3/100, Loss: 0.4596\n",
377
+ "Epoch 4/100\n"
378
+ ]
379
+ },
380
+ {
381
+ "name": "stderr",
382
+ "output_type": "stream",
383
+ "text": [
384
+ " \r"
385
+ ]
386
+ },
387
+ {
388
+ "name": "stdout",
389
+ "output_type": "stream",
390
+ "text": [
391
+ "Epoch 4/100, Loss: 0.9228\n",
392
+ "Epoch 5/100\n"
393
+ ]
394
+ },
395
+ {
396
+ "name": "stderr",
397
+ "output_type": "stream",
398
+ "text": [
399
+ " \r"
400
+ ]
401
+ },
402
+ {
403
+ "name": "stdout",
404
+ "output_type": "stream",
405
+ "text": [
406
+ "Epoch 5/100, Loss: 0.5939\n",
407
+ "Epoch 6/100\n"
408
+ ]
409
+ },
410
+ {
411
+ "name": "stderr",
412
+ "output_type": "stream",
413
+ "text": [
414
+ " \r"
415
+ ]
416
+ },
417
+ {
418
+ "name": "stdout",
419
+ "output_type": "stream",
420
+ "text": [
421
+ "Epoch 6/100, Loss: 0.7836\n",
422
+ "Epoch 7/100\n"
423
+ ]
424
+ },
425
+ {
426
+ "name": "stderr",
427
+ "output_type": "stream",
428
+ "text": [
429
+ " \r"
430
+ ]
431
+ },
432
+ {
433
+ "name": "stdout",
434
+ "output_type": "stream",
435
+ "text": [
436
+ "Epoch 7/100, Loss: 0.4829\n",
437
+ "Epoch 8/100\n"
438
+ ]
439
+ },
440
+ {
441
+ "name": "stderr",
442
+ "output_type": "stream",
443
+ "text": [
444
+ " \r"
445
+ ]
446
+ },
447
+ {
448
+ "name": "stdout",
449
+ "output_type": "stream",
450
+ "text": [
451
+ "Epoch 8/100, Loss: 0.5570\n",
452
+ "Epoch 9/100\n"
453
+ ]
454
+ },
455
+ {
456
+ "name": "stderr",
457
+ "output_type": "stream",
458
+ "text": [
459
+ " \r"
460
+ ]
461
+ },
462
+ {
463
+ "name": "stdout",
464
+ "output_type": "stream",
465
+ "text": [
466
+ "Epoch 9/100, Loss: 0.4176\n",
467
+ "Epoch 10/100\n"
468
+ ]
469
+ },
470
+ {
471
+ "name": "stderr",
472
+ "output_type": "stream",
473
+ "text": [
474
+ " \r"
475
+ ]
476
+ },
477
+ {
478
+ "name": "stdout",
479
+ "output_type": "stream",
480
+ "text": [
481
+ "Epoch 10/100, Loss: 0.9913\n",
482
+ "Epoch 11/100\n"
483
+ ]
484
+ },
485
+ {
486
+ "name": "stderr",
487
+ "output_type": "stream",
488
+ "text": [
489
+ " \r"
490
+ ]
491
+ },
492
+ {
493
+ "name": "stdout",
494
+ "output_type": "stream",
495
+ "text": [
496
+ "Epoch 11/100, Loss: 0.3367\n",
497
+ "Epoch 12/100\n"
498
+ ]
499
+ },
500
+ {
501
+ "name": "stderr",
502
+ "output_type": "stream",
503
+ "text": [
504
+ " \r"
505
+ ]
506
+ },
507
+ {
508
+ "name": "stdout",
509
+ "output_type": "stream",
510
+ "text": [
511
+ "Epoch 12/100, Loss: 0.3655\n",
512
+ "Epoch 13/100\n"
513
+ ]
514
+ },
515
+ {
516
+ "name": "stderr",
517
+ "output_type": "stream",
518
+ "text": [
519
+ " \r"
520
+ ]
521
+ },
522
+ {
523
+ "name": "stdout",
524
+ "output_type": "stream",
525
+ "text": [
526
+ "Epoch 13/100, Loss: 0.2642\n",
527
+ "Epoch 14/100\n"
528
+ ]
529
+ },
530
+ {
531
+ "name": "stderr",
532
+ "output_type": "stream",
533
+ "text": [
534
+ " \r"
535
+ ]
536
+ },
537
+ {
538
+ "name": "stdout",
539
+ "output_type": "stream",
540
+ "text": [
541
+ "Epoch 14/100, Loss: 0.2729\n",
542
+ "Epoch 15/100\n"
543
+ ]
544
+ },
545
+ {
546
+ "name": "stderr",
547
+ "output_type": "stream",
548
+ "text": [
549
+ " \r"
550
+ ]
551
+ },
552
+ {
553
+ "name": "stdout",
554
+ "output_type": "stream",
555
+ "text": [
556
+ "Epoch 15/100, Loss: 0.2490\n",
557
+ "Epoch 16/100\n"
558
+ ]
559
+ },
560
+ {
561
+ "name": "stderr",
562
+ "output_type": "stream",
563
+ "text": [
564
+ " \r"
565
+ ]
566
+ },
567
+ {
568
+ "name": "stdout",
569
+ "output_type": "stream",
570
+ "text": [
571
+ "Epoch 16/100, Loss: 0.2426\n",
572
+ "Epoch 17/100\n"
573
+ ]
574
+ },
575
+ {
576
+ "name": "stderr",
577
+ "output_type": "stream",
578
+ "text": [
579
+ " \r"
580
+ ]
581
+ },
582
+ {
583
+ "name": "stdout",
584
+ "output_type": "stream",
585
+ "text": [
586
+ "Epoch 17/100, Loss: 0.2418\n",
587
+ "Epoch 18/100\n"
588
+ ]
589
+ },
590
+ {
591
+ "name": "stderr",
592
+ "output_type": "stream",
593
+ "text": [
594
+ " \r"
595
+ ]
596
+ },
597
+ {
598
+ "name": "stdout",
599
+ "output_type": "stream",
600
+ "text": [
601
+ "Epoch 18/100, Loss: 0.2341\n",
602
+ "Epoch 19/100\n"
603
+ ]
604
+ },
605
+ {
606
+ "name": "stderr",
607
+ "output_type": "stream",
608
+ "text": [
609
+ " \r"
610
+ ]
611
+ },
612
+ {
613
+ "name": "stdout",
614
+ "output_type": "stream",
615
+ "text": [
616
+ "Epoch 19/100, Loss: 0.2288\n",
617
+ "Epoch 20/100\n"
618
+ ]
619
+ },
620
+ {
621
+ "name": "stderr",
622
+ "output_type": "stream",
623
+ "text": [
624
+ " \r"
625
+ ]
626
+ },
627
+ {
628
+ "name": "stdout",
629
+ "output_type": "stream",
630
+ "text": [
631
+ "Epoch 20/100, Loss: 0.2216\n",
632
+ "Epoch 21/100\n"
633
+ ]
634
+ },
635
+ {
636
+ "name": "stderr",
637
+ "output_type": "stream",
638
+ "text": [
639
+ " \r"
640
+ ]
641
+ },
642
+ {
643
+ "name": "stdout",
644
+ "output_type": "stream",
645
+ "text": [
646
+ "Epoch 21/100, Loss: 0.2200\n",
647
+ "Epoch 22/100\n"
648
+ ]
649
+ },
650
+ {
651
+ "name": "stderr",
652
+ "output_type": "stream",
653
+ "text": [
654
+ " \r"
655
+ ]
656
+ },
657
+ {
658
+ "name": "stdout",
659
+ "output_type": "stream",
660
+ "text": [
661
+ "Epoch 22/100, Loss: 0.2140\n",
662
+ "Epoch 23/100\n"
663
+ ]
664
+ },
665
+ {
666
+ "name": "stderr",
667
+ "output_type": "stream",
668
+ "text": [
669
+ " \r"
670
+ ]
671
+ },
672
+ {
673
+ "name": "stdout",
674
+ "output_type": "stream",
675
+ "text": [
676
+ "Epoch 23/100, Loss: 0.2125\n",
677
+ "Epoch 24/100\n"
678
+ ]
679
+ },
680
+ {
681
+ "name": "stderr",
682
+ "output_type": "stream",
683
+ "text": [
684
+ " \r"
685
+ ]
686
+ },
687
+ {
688
+ "name": "stdout",
689
+ "output_type": "stream",
690
+ "text": [
691
+ "Epoch 24/100, Loss: 0.2178\n",
692
+ "Epoch 25/100\n"
693
+ ]
694
+ },
695
+ {
696
+ "name": "stderr",
697
+ "output_type": "stream",
698
+ "text": [
699
+ " \r"
700
+ ]
701
+ },
702
+ {
703
+ "name": "stdout",
704
+ "output_type": "stream",
705
+ "text": [
706
+ "Epoch 25/100, Loss: 0.2127\n",
707
+ "Epoch 26/100\n"
708
+ ]
709
+ },
710
+ {
711
+ "name": "stderr",
712
+ "output_type": "stream",
713
+ "text": [
714
+ " \r"
715
+ ]
716
+ },
717
+ {
718
+ "name": "stdout",
719
+ "output_type": "stream",
720
+ "text": [
721
+ "Epoch 26/100, Loss: 0.2057\n",
722
+ "Epoch 27/100\n"
723
+ ]
724
+ },
725
+ {
726
+ "name": "stderr",
727
+ "output_type": "stream",
728
+ "text": [
729
+ " \r"
730
+ ]
731
+ },
732
+ {
733
+ "name": "stdout",
734
+ "output_type": "stream",
735
+ "text": [
736
+ "Epoch 27/100, Loss: 0.2168\n",
737
+ "Epoch 28/100\n"
738
+ ]
739
+ },
740
+ {
741
+ "name": "stderr",
742
+ "output_type": "stream",
743
+ "text": [
744
+ " \r"
745
+ ]
746
+ },
747
+ {
748
+ "name": "stdout",
749
+ "output_type": "stream",
750
+ "text": [
751
+ "Epoch 28/100, Loss: 0.2043\n",
752
+ "Epoch 29/100\n"
753
+ ]
754
+ },
755
+ {
756
+ "name": "stderr",
757
+ "output_type": "stream",
758
+ "text": [
759
+ " \r"
760
+ ]
761
+ },
762
+ {
763
+ "name": "stdout",
764
+ "output_type": "stream",
765
+ "text": [
766
+ "Epoch 29/100, Loss: 0.2039\n",
767
+ "Epoch 30/100\n"
768
+ ]
769
+ },
770
+ {
771
+ "name": "stderr",
772
+ "output_type": "stream",
773
+ "text": [
774
+ " \r"
775
+ ]
776
+ },
777
+ {
778
+ "name": "stdout",
779
+ "output_type": "stream",
780
+ "text": [
781
+ "Epoch 30/100, Loss: 0.1975\n",
782
+ "Epoch 31/100\n"
783
+ ]
784
+ },
785
+ {
786
+ "name": "stderr",
787
+ "output_type": "stream",
788
+ "text": [
789
+ " \r"
790
+ ]
791
+ },
792
+ {
793
+ "name": "stdout",
794
+ "output_type": "stream",
795
+ "text": [
796
+ "Epoch 31/100, Loss: 0.1956\n",
797
+ "Epoch 32/100\n"
798
+ ]
799
+ },
800
+ {
801
+ "name": "stderr",
802
+ "output_type": "stream",
803
+ "text": [
804
+ " \r"
805
+ ]
806
+ },
807
+ {
808
+ "name": "stdout",
809
+ "output_type": "stream",
810
+ "text": [
811
+ "Epoch 32/100, Loss: 0.1958\n",
812
+ "Epoch 33/100\n"
813
+ ]
814
+ },
815
+ {
816
+ "name": "stderr",
817
+ "output_type": "stream",
818
+ "text": [
819
+ " \r"
820
+ ]
821
+ },
822
+ {
823
+ "name": "stdout",
824
+ "output_type": "stream",
825
+ "text": [
826
+ "Epoch 33/100, Loss: 0.1893\n",
827
+ "Epoch 34/100\n"
828
+ ]
829
+ },
830
+ {
831
+ "name": "stderr",
832
+ "output_type": "stream",
833
+ "text": [
834
+ " \r"
835
+ ]
836
+ },
837
+ {
838
+ "name": "stdout",
839
+ "output_type": "stream",
840
+ "text": [
841
+ "Epoch 34/100, Loss: 0.1890\n",
842
+ "Epoch 35/100\n"
843
+ ]
844
+ },
845
+ {
846
+ "name": "stderr",
847
+ "output_type": "stream",
848
+ "text": [
849
+ " \r"
850
+ ]
851
+ },
852
+ {
853
+ "name": "stdout",
854
+ "output_type": "stream",
855
+ "text": [
856
+ "Epoch 35/100, Loss: 0.1869\n",
857
+ "Epoch 36/100\n"
858
+ ]
859
+ },
860
+ {
861
+ "name": "stderr",
862
+ "output_type": "stream",
863
+ "text": [
864
+ " \r"
865
+ ]
866
+ },
867
+ {
868
+ "name": "stdout",
869
+ "output_type": "stream",
870
+ "text": [
871
+ "Epoch 36/100, Loss: 0.1818\n",
872
+ "Epoch 37/100\n"
873
+ ]
874
+ },
875
+ {
876
+ "name": "stderr",
877
+ "output_type": "stream",
878
+ "text": [
879
+ " \r"
880
+ ]
881
+ },
882
+ {
883
+ "name": "stdout",
884
+ "output_type": "stream",
885
+ "text": [
886
+ "Epoch 37/100, Loss: 0.1784\n",
887
+ "Epoch 38/100\n"
888
+ ]
889
+ },
890
+ {
891
+ "name": "stderr",
892
+ "output_type": "stream",
893
+ "text": [
894
+ " \r"
895
+ ]
896
+ },
897
+ {
898
+ "name": "stdout",
899
+ "output_type": "stream",
900
+ "text": [
901
+ "Epoch 38/100, Loss: 0.1761\n",
902
+ "Epoch 39/100\n"
903
+ ]
904
+ },
905
+ {
906
+ "name": "stderr",
907
+ "output_type": "stream",
908
+ "text": [
909
+ " \r"
910
+ ]
911
+ },
912
+ {
913
+ "name": "stdout",
914
+ "output_type": "stream",
915
+ "text": [
916
+ "Epoch 39/100, Loss: 0.1757\n",
917
+ "Epoch 40/100\n"
918
+ ]
919
+ },
920
+ {
921
+ "name": "stderr",
922
+ "output_type": "stream",
923
+ "text": [
924
+ " \r"
925
+ ]
926
+ },
927
+ {
928
+ "name": "stdout",
929
+ "output_type": "stream",
930
+ "text": [
931
+ "Epoch 40/100, Loss: 0.1746\n",
932
+ "Epoch 41/100\n"
933
+ ]
934
+ },
935
+ {
936
+ "name": "stderr",
937
+ "output_type": "stream",
938
+ "text": [
939
+ " \r"
940
+ ]
941
+ },
942
+ {
943
+ "name": "stdout",
944
+ "output_type": "stream",
945
+ "text": [
946
+ "Epoch 41/100, Loss: 0.1756\n",
947
+ "Epoch 42/100\n"
948
+ ]
949
+ },
950
+ {
951
+ "name": "stderr",
952
+ "output_type": "stream",
953
+ "text": [
954
+ " \r"
955
+ ]
956
+ },
957
+ {
958
+ "name": "stdout",
959
+ "output_type": "stream",
960
+ "text": [
961
+ "Epoch 42/100, Loss: 0.1711\n",
962
+ "Epoch 43/100\n"
963
+ ]
964
+ },
965
+ {
966
+ "name": "stderr",
967
+ "output_type": "stream",
968
+ "text": [
969
+ " \r"
970
+ ]
971
+ },
972
+ {
973
+ "name": "stdout",
974
+ "output_type": "stream",
975
+ "text": [
976
+ "Epoch 43/100, Loss: 0.1706\n",
977
+ "Epoch 44/100\n"
978
+ ]
979
+ },
980
+ {
981
+ "name": "stderr",
982
+ "output_type": "stream",
983
+ "text": [
984
+ " \r"
985
+ ]
986
+ },
987
+ {
988
+ "name": "stdout",
989
+ "output_type": "stream",
990
+ "text": [
991
+ "Epoch 44/100, Loss: 0.1681\n",
992
+ "Epoch 45/100\n"
993
+ ]
994
+ },
995
+ {
996
+ "name": "stderr",
997
+ "output_type": "stream",
998
+ "text": [
999
+ " \r"
1000
+ ]
1001
+ },
1002
+ {
1003
+ "name": "stdout",
1004
+ "output_type": "stream",
1005
+ "text": [
1006
+ "Epoch 45/100, Loss: 0.1672\n",
1007
+ "Epoch 46/100\n"
1008
+ ]
1009
+ },
1010
+ {
1011
+ "name": "stderr",
1012
+ "output_type": "stream",
1013
+ "text": [
1014
+ " \r"
1015
+ ]
1016
+ },
1017
+ {
1018
+ "name": "stdout",
1019
+ "output_type": "stream",
1020
+ "text": [
1021
+ "Epoch 46/100, Loss: 0.1617\n",
1022
+ "Epoch 47/100\n"
1023
+ ]
1024
+ },
1025
+ {
1026
+ "name": "stderr",
1027
+ "output_type": "stream",
1028
+ "text": [
1029
+ " \r"
1030
+ ]
1031
+ },
1032
+ {
1033
+ "name": "stdout",
1034
+ "output_type": "stream",
1035
+ "text": [
1036
+ "Epoch 47/100, Loss: 0.1637\n",
1037
+ "Epoch 48/100\n"
1038
+ ]
1039
+ },
1040
+ {
1041
+ "name": "stderr",
1042
+ "output_type": "stream",
1043
+ "text": [
1044
+ " \r"
1045
+ ]
1046
+ },
1047
+ {
1048
+ "name": "stdout",
1049
+ "output_type": "stream",
1050
+ "text": [
1051
+ "Epoch 48/100, Loss: 0.1681\n",
1052
+ "Epoch 49/100\n"
1053
+ ]
1054
+ },
1055
+ {
1056
+ "name": "stderr",
1057
+ "output_type": "stream",
1058
+ "text": [
1059
+ " \r"
1060
+ ]
1061
+ },
1062
+ {
1063
+ "name": "stdout",
1064
+ "output_type": "stream",
1065
+ "text": [
1066
+ "Epoch 49/100, Loss: 0.1637\n",
1067
+ "Epoch 50/100\n"
1068
+ ]
1069
+ },
1070
+ {
1071
+ "name": "stderr",
1072
+ "output_type": "stream",
1073
+ "text": [
1074
+ " \r"
1075
+ ]
1076
+ },
1077
+ {
1078
+ "name": "stdout",
1079
+ "output_type": "stream",
1080
+ "text": [
1081
+ "Epoch 50/100, Loss: 0.1584\n",
1082
+ "Epoch 51/100\n"
1083
+ ]
1084
+ },
1085
+ {
1086
+ "name": "stderr",
1087
+ "output_type": "stream",
1088
+ "text": [
1089
+ " \r"
1090
+ ]
1091
+ },
1092
+ {
1093
+ "name": "stdout",
1094
+ "output_type": "stream",
1095
+ "text": [
1096
+ "Epoch 51/100, Loss: 0.1591\n",
1097
+ "Epoch 52/100\n"
1098
+ ]
1099
+ },
1100
+ {
1101
+ "name": "stderr",
1102
+ "output_type": "stream",
1103
+ "text": [
1104
+ " \r"
1105
+ ]
1106
+ },
1107
+ {
1108
+ "name": "stdout",
1109
+ "output_type": "stream",
1110
+ "text": [
1111
+ "Epoch 52/100, Loss: 0.1583\n",
1112
+ "Epoch 53/100\n"
1113
+ ]
1114
+ },
1115
+ {
1116
+ "name": "stderr",
1117
+ "output_type": "stream",
1118
+ "text": [
1119
+ " \r"
1120
+ ]
1121
+ },
1122
+ {
1123
+ "name": "stdout",
1124
+ "output_type": "stream",
1125
+ "text": [
1126
+ "Epoch 53/100, Loss: 0.1536\n",
1127
+ "Epoch 54/100\n"
1128
+ ]
1129
+ },
1130
+ {
1131
+ "name": "stderr",
1132
+ "output_type": "stream",
1133
+ "text": [
1134
+ " \r"
1135
+ ]
1136
+ },
1137
+ {
1138
+ "name": "stdout",
1139
+ "output_type": "stream",
1140
+ "text": [
1141
+ "Epoch 54/100, Loss: 0.1584\n",
1142
+ "Epoch 55/100\n"
1143
+ ]
1144
+ },
1145
+ {
1146
+ "name": "stderr",
1147
+ "output_type": "stream",
1148
+ "text": [
1149
+ " \r"
1150
+ ]
1151
+ },
1152
+ {
1153
+ "name": "stdout",
1154
+ "output_type": "stream",
1155
+ "text": [
1156
+ "Epoch 55/100, Loss: 0.1624\n",
1157
+ "Epoch 56/100\n"
1158
+ ]
1159
+ },
1160
+ {
1161
+ "name": "stderr",
1162
+ "output_type": "stream",
1163
+ "text": [
1164
+ " \r"
1165
+ ]
1166
+ },
1167
+ {
1168
+ "name": "stdout",
1169
+ "output_type": "stream",
1170
+ "text": [
1171
+ "Epoch 56/100, Loss: 0.1602\n",
1172
+ "Epoch 57/100\n"
1173
+ ]
1174
+ },
1175
+ {
1176
+ "name": "stderr",
1177
+ "output_type": "stream",
1178
+ "text": [
1179
+ " \r"
1180
+ ]
1181
+ },
1182
+ {
1183
+ "name": "stdout",
1184
+ "output_type": "stream",
1185
+ "text": [
1186
+ "Epoch 57/100, Loss: 0.1547\n",
1187
+ "Epoch 58/100\n"
1188
+ ]
1189
+ },
1190
+ {
1191
+ "name": "stderr",
1192
+ "output_type": "stream",
1193
+ "text": [
1194
+ " \r"
1195
+ ]
1196
+ },
1197
+ {
1198
+ "name": "stdout",
1199
+ "output_type": "stream",
1200
+ "text": [
1201
+ "Epoch 58/100, Loss: 0.1540\n",
1202
+ "Epoch 59/100\n"
1203
+ ]
1204
+ },
1205
+ {
1206
+ "name": "stderr",
1207
+ "output_type": "stream",
1208
+ "text": [
1209
+ " \r"
1210
+ ]
1211
+ },
1212
+ {
1213
+ "name": "stdout",
1214
+ "output_type": "stream",
1215
+ "text": [
1216
+ "Epoch 59/100, Loss: 0.1541\n",
1217
+ "Epoch 60/100\n"
1218
+ ]
1219
+ },
1220
+ {
1221
+ "name": "stderr",
1222
+ "output_type": "stream",
1223
+ "text": [
1224
+ " \r"
1225
+ ]
1226
+ },
1227
+ {
1228
+ "name": "stdout",
1229
+ "output_type": "stream",
1230
+ "text": [
1231
+ "Epoch 60/100, Loss: 0.1505\n",
1232
+ "Epoch 61/100\n"
1233
+ ]
1234
+ },
1235
+ {
1236
+ "name": "stderr",
1237
+ "output_type": "stream",
1238
+ "text": [
1239
+ " \r"
1240
+ ]
1241
+ },
1242
+ {
1243
+ "name": "stdout",
1244
+ "output_type": "stream",
1245
+ "text": [
1246
+ "Epoch 61/100, Loss: 0.1521\n",
1247
+ "Epoch 62/100\n"
1248
+ ]
1249
+ },
1250
+ {
1251
+ "name": "stderr",
1252
+ "output_type": "stream",
1253
+ "text": [
1254
+ " \r"
1255
+ ]
1256
+ },
1257
+ {
1258
+ "name": "stdout",
1259
+ "output_type": "stream",
1260
+ "text": [
1261
+ "Epoch 62/100, Loss: 0.1504\n",
1262
+ "Epoch 63/100\n"
1263
+ ]
1264
+ },
1265
+ {
1266
+ "name": "stderr",
1267
+ "output_type": "stream",
1268
+ "text": [
1269
+ " \r"
1270
+ ]
1271
+ },
1272
+ {
1273
+ "name": "stdout",
1274
+ "output_type": "stream",
1275
+ "text": [
1276
+ "Epoch 63/100, Loss: 0.1505\n",
1277
+ "Epoch 64/100\n"
1278
+ ]
1279
+ },
1280
+ {
1281
+ "name": "stderr",
1282
+ "output_type": "stream",
1283
+ "text": [
1284
+ " \r"
1285
+ ]
1286
+ },
1287
+ {
1288
+ "name": "stdout",
1289
+ "output_type": "stream",
1290
+ "text": [
1291
+ "Epoch 64/100, Loss: 0.1466\n",
1292
+ "Epoch 65/100\n"
1293
+ ]
1294
+ },
1295
+ {
1296
+ "name": "stderr",
1297
+ "output_type": "stream",
1298
+ "text": [
1299
+ " \r"
1300
+ ]
1301
+ },
1302
+ {
1303
+ "name": "stdout",
1304
+ "output_type": "stream",
1305
+ "text": [
1306
+ "Epoch 65/100, Loss: 0.1463\n",
1307
+ "Epoch 66/100\n"
1308
+ ]
1309
+ },
1310
+ {
1311
+ "name": "stderr",
1312
+ "output_type": "stream",
1313
+ "text": [
1314
+ " \r"
1315
+ ]
1316
+ },
1317
+ {
1318
+ "name": "stdout",
1319
+ "output_type": "stream",
1320
+ "text": [
1321
+ "Epoch 66/100, Loss: 0.1517\n",
1322
+ "Epoch 67/100\n"
1323
+ ]
1324
+ },
1325
+ {
1326
+ "name": "stderr",
1327
+ "output_type": "stream",
1328
+ "text": [
1329
+ " \r"
1330
+ ]
1331
+ },
1332
+ {
1333
+ "name": "stdout",
1334
+ "output_type": "stream",
1335
+ "text": [
1336
+ "Epoch 67/100, Loss: 0.1461\n",
1337
+ "Epoch 68/100\n"
1338
+ ]
1339
+ },
1340
+ {
1341
+ "name": "stderr",
1342
+ "output_type": "stream",
1343
+ "text": [
1344
+ " \r"
1345
+ ]
1346
+ },
1347
+ {
1348
+ "name": "stdout",
1349
+ "output_type": "stream",
1350
+ "text": [
1351
+ "Epoch 68/100, Loss: 0.1428\n",
1352
+ "Epoch 69/100\n"
1353
+ ]
1354
+ },
1355
+ {
1356
+ "name": "stderr",
1357
+ "output_type": "stream",
1358
+ "text": [
1359
+ " \r"
1360
+ ]
1361
+ },
1362
+ {
1363
+ "name": "stdout",
1364
+ "output_type": "stream",
1365
+ "text": [
1366
+ "Epoch 69/100, Loss: 0.1457\n",
1367
+ "Epoch 70/100\n"
1368
+ ]
1369
+ },
1370
+ {
1371
+ "name": "stderr",
1372
+ "output_type": "stream",
1373
+ "text": [
1374
+ " \r"
1375
+ ]
1376
+ },
1377
+ {
1378
+ "name": "stdout",
1379
+ "output_type": "stream",
1380
+ "text": [
1381
+ "Epoch 70/100, Loss: 0.1549\n",
1382
+ "Epoch 71/100\n"
1383
+ ]
1384
+ },
1385
+ {
1386
+ "name": "stderr",
1387
+ "output_type": "stream",
1388
+ "text": [
1389
+ " \r"
1390
+ ]
1391
+ },
1392
+ {
1393
+ "name": "stdout",
1394
+ "output_type": "stream",
1395
+ "text": [
1396
+ "Epoch 71/100, Loss: 0.1504\n",
1397
+ "Epoch 72/100\n"
1398
+ ]
1399
+ },
1400
+ {
1401
+ "name": "stderr",
1402
+ "output_type": "stream",
1403
+ "text": [
1404
+ " \r"
1405
+ ]
1406
+ },
1407
+ {
1408
+ "name": "stdout",
1409
+ "output_type": "stream",
1410
+ "text": [
1411
+ "Epoch 72/100, Loss: 0.1455\n",
1412
+ "Epoch 73/100\n"
1413
+ ]
1414
+ },
1415
+ {
1416
+ "name": "stderr",
1417
+ "output_type": "stream",
1418
+ "text": [
1419
+ " \r"
1420
+ ]
1421
+ },
1422
+ {
1423
+ "name": "stdout",
1424
+ "output_type": "stream",
1425
+ "text": [
1426
+ "Epoch 73/100, Loss: 0.1425\n",
1427
+ "Epoch 74/100\n"
1428
+ ]
1429
+ },
1430
+ {
1431
+ "name": "stderr",
1432
+ "output_type": "stream",
1433
+ "text": [
1434
+ " \r"
1435
+ ]
1436
+ },
1437
+ {
1438
+ "name": "stdout",
1439
+ "output_type": "stream",
1440
+ "text": [
1441
+ "Epoch 74/100, Loss: 0.1422\n",
1442
+ "Epoch 75/100\n"
1443
+ ]
1444
+ },
1445
+ {
1446
+ "name": "stderr",
1447
+ "output_type": "stream",
1448
+ "text": [
1449
+ " \r"
1450
+ ]
1451
+ },
1452
+ {
1453
+ "name": "stdout",
1454
+ "output_type": "stream",
1455
+ "text": [
1456
+ "Epoch 75/100, Loss: 0.1421\n",
1457
+ "Epoch 76/100\n"
1458
+ ]
1459
+ },
1460
+ {
1461
+ "name": "stderr",
1462
+ "output_type": "stream",
1463
+ "text": [
1464
+ " \r"
1465
+ ]
1466
+ },
1467
+ {
1468
+ "name": "stdout",
1469
+ "output_type": "stream",
1470
+ "text": [
1471
+ "Epoch 76/100, Loss: 0.1452\n",
1472
+ "Epoch 77/100\n"
1473
+ ]
1474
+ },
1475
+ {
1476
+ "name": "stderr",
1477
+ "output_type": "stream",
1478
+ "text": [
1479
+ " \r"
1480
+ ]
1481
+ },
1482
+ {
1483
+ "name": "stdout",
1484
+ "output_type": "stream",
1485
+ "text": [
1486
+ "Epoch 77/100, Loss: 0.1479\n",
1487
+ "Epoch 78/100\n"
1488
+ ]
1489
+ },
1490
+ {
1491
+ "name": "stderr",
1492
+ "output_type": "stream",
1493
+ "text": [
1494
+ " \r"
1495
+ ]
1496
+ },
1497
+ {
1498
+ "name": "stdout",
1499
+ "output_type": "stream",
1500
+ "text": [
1501
+ "Epoch 78/100, Loss: 0.1371\n",
1502
+ "Epoch 79/100\n"
1503
+ ]
1504
+ },
1505
+ {
1506
+ "name": "stderr",
1507
+ "output_type": "stream",
1508
+ "text": [
1509
+ " \r"
1510
+ ]
1511
+ },
1512
+ {
1513
+ "name": "stdout",
1514
+ "output_type": "stream",
1515
+ "text": [
1516
+ "Epoch 79/100, Loss: 0.1323\n",
1517
+ "Epoch 80/100\n"
1518
+ ]
1519
+ },
1520
+ {
1521
+ "name": "stderr",
1522
+ "output_type": "stream",
1523
+ "text": [
1524
+ " \r"
1525
+ ]
1526
+ },
1527
+ {
1528
+ "name": "stdout",
1529
+ "output_type": "stream",
1530
+ "text": [
1531
+ "Epoch 80/100, Loss: 0.1396\n",
1532
+ "Epoch 81/100\n"
1533
+ ]
1534
+ },
1535
+ {
1536
+ "name": "stderr",
1537
+ "output_type": "stream",
1538
+ "text": [
1539
+ " \r"
1540
+ ]
1541
+ },
1542
+ {
1543
+ "name": "stdout",
1544
+ "output_type": "stream",
1545
+ "text": [
1546
+ "Epoch 81/100, Loss: 0.1373\n",
1547
+ "Epoch 82/100\n"
1548
+ ]
1549
+ },
1550
+ {
1551
+ "name": "stderr",
1552
+ "output_type": "stream",
1553
+ "text": [
1554
+ " \r"
1555
+ ]
1556
+ },
1557
+ {
1558
+ "name": "stdout",
1559
+ "output_type": "stream",
1560
+ "text": [
1561
+ "Epoch 82/100, Loss: 0.1366\n",
1562
+ "Epoch 83/100\n"
1563
+ ]
1564
+ },
1565
+ {
1566
+ "name": "stderr",
1567
+ "output_type": "stream",
1568
+ "text": [
1569
+ " \r"
1570
+ ]
1571
+ },
1572
+ {
1573
+ "name": "stdout",
1574
+ "output_type": "stream",
1575
+ "text": [
1576
+ "Epoch 83/100, Loss: 0.1334\n",
1577
+ "Epoch 84/100\n"
1578
+ ]
1579
+ },
1580
+ {
1581
+ "name": "stderr",
1582
+ "output_type": "stream",
1583
+ "text": [
1584
+ "Epoch Progress: 84%|████████▍ | 101/120 [00:01<00:00, 70.34it/s, Loss=0.133]"
1585
+ ]
1586
+ }
1587
+ ],
1588
+ "source": [
1589
+ "VAE_train(vae, optimizer, loader, epochs, dim_input, save_path=None)"
1590
+ ]
1591
+ },
1592
+ {
1593
+ "cell_type": "code",
1594
+ "execution_count": 278,
1595
+ "id": "3b7f5142-0db4-4ff9-8379-2a1d3db79537",
1596
+ "metadata": {
1597
+ "tags": []
1598
+ },
1599
+ "outputs": [],
1600
+ "source": [
1601
+ "f_test, ferr_test, specz_test = photoz_archive.get_testing_data()"
1602
+ ]
1603
+ },
1604
+ {
1605
+ "cell_type": "code",
1606
+ "execution_count": 279,
1607
+ "id": "0ea2e51f-1879-485e-a0c5-36b564ce5bc2",
1608
+ "metadata": {
1609
+ "tags": []
1610
+ },
1611
+ "outputs": [],
1612
+ "source": [
1613
+ "Ntest=10"
1614
+ ]
1615
+ },
1616
+ {
1617
+ "cell_type": "code",
1618
+ "execution_count": 301,
1619
+ "id": "f2a2896d-cfa1-4978-a403-5a1ac62ddbfc",
1620
+ "metadata": {
1621
+ "tags": []
1622
+ },
1623
+ "outputs": [],
1624
+ "source": [
1625
+ "datain = torch.randn(size=(1, 50)).to(device)\n",
1626
+ "x = vae.encoder(datain)\n",
1627
+ "mu = vae.fc_mu(x)\n",
1628
+ "log_var = vae.fc_logvar(x)\n",
1629
+ "Nsamp=1000"
1630
+ ]
1631
+ },
1632
+ {
1633
+ "cell_type": "code",
1634
+ "execution_count": 303,
1635
+ "id": "e1ee1209-7f4b-40e1-b7b5-a83c3fe8ef75",
1636
+ "metadata": {
1637
+ "tags": []
1638
+ },
1639
+ "outputs": [],
1640
+ "source": [
1641
+ "ppz = np.zeros(shape=(Ntest,Nsamp))\n",
1642
+ "for ii in range(Ntest):\n",
1643
+ " for jj in range(Nsamp):\n",
1644
+ " z =vae.sampling(mu,log_var)\n",
1645
+ " ypred = vae.decode(z.to(device),torch.Tensor(f[ii]).unsqueeze(0).to(device))\n",
1646
+ " ppz[ii,jj] = ypred"
1647
+ ]
1648
+ },
1649
+ {
1650
+ "cell_type": "code",
1651
+ "execution_count": 304,
1652
+ "id": "fec26b65-cdc3-4b11-8fd9-cd502cacfc81",
1653
+ "metadata": {
1654
+ "tags": []
1655
+ },
1656
+ "outputs": [],
1657
+ "source": [
1658
+ "m=9"
1659
+ ]
1660
+ },
1661
+ {
1662
+ "cell_type": "code",
1663
+ "execution_count": 305,
1664
+ "id": "a1e92836-3465-44a1-b554-0de380e5ba16",
1665
+ "metadata": {
1666
+ "tags": []
1667
+ },
1668
+ "outputs": [
1669
+ {
1670
+ "data": {
1671
+ "text/plain": [
1672
+ "(array([ 3., 2., 3., 7., 4., 12., 12., 9., 13., 16., 14., 23., 18.,\n",
1673
+ " 25., 42., 56., 45., 49., 48., 34., 55., 42., 45., 39., 34., 41.,\n",
1674
+ " 25., 33., 37., 26., 24., 21., 22., 27., 18., 19., 12., 12., 4.,\n",
1675
+ " 8., 6., 3., 6., 2., 2., 0., 1., 0., 0., 1.]),\n",
1676
+ " array([0.56738353, 0.57165519, 0.57592686, 0.58019852, 0.58447019,\n",
1677
+ " 0.58874185, 0.59301352, 0.59728518, 0.60155684, 0.60582851,\n",
1678
+ " 0.61010017, 0.61437184, 0.6186435 , 0.62291517, 0.62718683,\n",
1679
+ " 0.6314585 , 0.63573016, 0.64000183, 0.64427349, 0.64854516,\n",
1680
+ " 0.65281682, 0.65708848, 0.66136015, 0.66563181, 0.66990348,\n",
1681
+ " 0.67417514, 0.67844681, 0.68271847, 0.68699014, 0.6912618 ,\n",
1682
+ " 0.69553347, 0.69980513, 0.7040768 , 0.70834846, 0.71262012,\n",
1683
+ " 0.71689179, 0.72116345, 0.72543512, 0.72970678, 0.73397845,\n",
1684
+ " 0.73825011, 0.74252178, 0.74679344, 0.75106511, 0.75533677,\n",
1685
+ " 0.75960844, 0.7638801 , 0.76815176, 0.77242343, 0.77669509,\n",
1686
+ " 0.78096676]),\n",
1687
+ " <BarContainer object of 50 artists>)"
1688
+ ]
1689
+ },
1690
+ "execution_count": 305,
1691
+ "metadata": {},
1692
+ "output_type": "execute_result"
1693
+ },
1694
+ {
1695
+ "data": {
1696
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAGcCAYAAABwemJAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZaUlEQVR4nO3df2jdd6H/8VeaZRmdTcTqXFPjTcNIZfqHl6t1vVukDQPFzjp/lSIuot474x2KFvS27OJl3N51+IeuVEEqiIx5Lzi1dNJpB9LZFg9YmNoi+3GrSW/sZnb3g5Pp1iztOfeP+22+i2td0px3mpM+HnDYcvI5n7wPbz7Nk/f5fPJpqdfr9QAAFLLkYg8AAFjcxAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgqMsu9gCSpFar5YknnsiyZcvS0tJysYcDAMxAvV7P888/n66urixZcv71iwURG0888US6u7sv9jAAgAswOjqaN73pTef9/oKIjWXLliX5v8F2dHRc5NEAADMxPj6e7u7uqd/j57MgYuPsRycdHR1iAwCazKudAuEEUQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDACjqsos9ALiYerbue9VtRu7aMA8jAVi8rGwAAEWJDQCgKLEBABQlNgCAosQGAFCUq1GgybiCBmg2VjYAgKLEBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQ1Jxi44knnmjUOACARWpWsVGv19PX15eWlpa0tLTk4x//eJJkeHg4Q0ND2b17dwYHB3PixIkigwUAms9ls9n4Jz/5ST7/+c/nuuuuS5KsWrUqtVotGzduzM6dOzMwMJBVq1Zl8+bNqVQqRQYMADSXWa1sfOMb30hra2uuuuqqvOMd78jy5cuzf//+HD9+PP39/UmSgYGBHD16NEeOHCkyYACgucw4Np5//vlMTEzkX/7lX7Jq1ap87nOfS71eT6VSSW9vb9ra2pIkra2t6e3tzYEDB867r4mJiYyPj097AACL04w/Rlm2bFl+9rOfZXJyMt/61rfyxS9+Mddcc03GxsbS0dExbdvOzs6cPHnyvPvasWNH7rjjjgsfNQDQNGZ9NUpbW1s+97nPZevWrfmP//iPtLW1Ta1qnFWr1VKr1c67j23btqVarU49RkdHZz9yAKApXPClrx/4wAdSrVazYsWKV3wMUq1Ws3LlyvO+tr29PR0dHdMeAMDidMGxcebMmaxevTrr1q3L8PBw6vV6kmRycjIjIyNZv359wwYJADSvGcfGoUOHcu+9905Fxe7du/OlL30pa9euTVdXVw4dOpQkOXjwYHp6erJmzZoyIwYAmsqMTxAdHR3NF77whfznf/5nrrvuugwODuaGG25Ikuzduzfbt2/PsWPHUqlUsmfPnrS0tBQbNADQPGYcGx/72MfysY997Jzf6+vryz333JMkue222xozMmgiPVv3veo2I3dtmIeRACw8bsQGABQlNgCAosQGAFCU2AAAihIbAEBRs7rFPHDhXLECXKqsbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoKjLLvYAYKHr2brvYg+hiJm8r5G7NszDSIDFzsoGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKuuxiDwBK6dm672IP4aK5lN87sPBY2QAAihIbAEBRYgMAKEpsAABFiQ0AoChXowDFzeTqmJG7NszDSICLwcoGAFDUBcXGCy+8kGuvvTYjIyNJkuHh4QwNDWX37t0ZHBzMiRMnGjlGAKCJXdDHKLt27cojjzySJKnVatm4cWN27tyZgYGBrFq1Kps3b06lUmnoQAGA5jTrlY29e/dm/fr1U1/v378/x48fT39/f5JkYGAgR48ezZEjRxo3SgCgac0qNv77v/87Tz75ZNasWTP1XKVSSW9vb9ra2pIkra2t6e3tzYEDB867n4mJiYyPj097AACL04xj48yZM/n2t7+dW2+9ddrzY2Nj6ejomPZcZ2dnTp48ed597dixI52dnVOP7u7uWQ4bAGgWM46Nb37zm/nMZz6TJUumv6StrW1qVeOsWq2WWq123n1t27Yt1Wp16jE6OjrLYQMAzWLGJ4ju2rUrX/7yl6c9t3r16tRqtbz1rW+d9ny1Ws3KlSvPu6/29va0t7fPcqgAQDOacWz813/917SvW1pa8thjj+XkyZN53/vel3q9npaWlkxOTmZkZGTaSaQAwKVrzn/Ua+3atenq6sqhQ4eSJAcPHkxPT8+0k0gBgEvXnP9c+ZIlS7J3795s3749x44dS6VSyZ49e9LS0tKI8QEATe6CY6Ner0/9f19fX+65554kyW233Tb3UQEAi4YbsQHn5QZqQCO4ERsAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBR7o0CLCru5wILj5UNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUddnFHgDw//Vs3XexhzBrzThmYH5Z2QAAihIbAEBRYgMAKEpsAABFiQ0AoChXowBNw5Uv0JysbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAipp1bPzqV7/KDTfckNe97nW58cYb8/TTTydJhoeHMzQ0lN27d2dwcDAnTpxo+GABgOYzq9g4depUfvjDH+bBBx/M6OhoXnjhhXzta19LrVbLxo0bs2nTptx666255ZZbsnnz5lJjBgCayKxio1qt5itf+UqWLl2aK6+8Mv39/VmyZEn279+f48ePp7+/P0kyMDCQo0eP5siRI0UGDQA0j1nFxhvf+MZcfvnlSZKXXnopf/zjH/PFL34xlUolvb29aWtrS5K0tramt7c3Bw4cOOd+JiYmMj4+Pu0BACxOF3SC6AMPPJDrrrsuBw4cyG9/+9uMjY2lo6Nj2jadnZ05efLkOV+/Y8eOdHZ2Tj26u7svZBgAQBO4oNh4z3vekx/84Af5+7//+3z84x9PW1vb1KrGWbVaLbVa7Zyv37ZtW6rV6tRjdHT0QoYBADSByy7kRWc/JvnOd76T5cuX5w1veMMrPgqpVqtZuXLlOV/f3t6e9vb2C/nRAECTmdPf2Vi6dGle//rXZ926dRkeHk69Xk+STE5OZmRkJOvXr2/IIAGA5jWr2HjmmWfy4x//eCoqfv7zn+eWW25Jf39/urq6cujQoSTJwYMH09PTkzVr1jR+xABAU5nVxyjDw8P5h3/4h6xevTof+chH8prXvCb//u//npaWluzduzfbt2/PsWPHUqlUsmfPnrS0tJQaNwDQJGYVG+94xzsyNjZ2zu/19fXlnnvuSZLcdtttcx8ZALAouDcKAFCU2AAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDAChqVjdiA6Dxerbue9VtRu7aMA8jgTKsbAAARYkNAKAosQEAFCU2AICixAYAUJSrUYBLjqs/YH5Z2QAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAU5dJXmtJMLl2kuZhTWLysbAAARYkNAKAosQEAFCU2AICixAYAUJSrUQDOwc3aoHGsbAAARYkNAKAosQEAFCU2AICixAYAUJSrUZg3zu4HuDRZ2QAAihIbAEBRYgMAKEpsAABFiQ0AoCixAQAU5dJXgIJmcsk3LHZWNgCAosQGAFCU2AAAihIbAEBRYgMAKMrVKAAXyJUmMDNWNgCAomYVG/fff39Wr16djo6OfPjDH86zzz6bJBkeHs7Q0FB2796dwcHBnDhxoshgAYDmM+PY+P3vf599+/blRz/6Ub773e/moYceyj//8z+nVqtl48aN2bRpU2699dbccsst2bx5c8kxAwBNZMbnbBw+fDi7du3K5Zdfnre+9a05evRo7rvvvuzfvz/Hjx9Pf39/kmRgYCA333xzjhw5kne+853FBg4ANIcZr2wMDg7m8ssvn/r6jW98Y9785jenUqmkt7c3bW1tSZLW1tb09vbmwIED593XxMRExsfHpz0AgMXpgk8Qffjhh/OZz3wmY2Nj6ejomPa9zs7OnDx58ryv3bFjRzo7O6ce3d3dFzoMAGCBu6DYePLJJ3P69OncfPPNaWtrm1rVOKtWq6VWq5339du2bUu1Wp16jI6OXsgwAIAmMOu/s3HmzJncfffd2bVrV5JkxYoVOXz48LRtqtVqVq5ced59tLe3p729fbY/GgBoQrNe2fj617+eLVu25DWveU2S5IYbbsjw8HDq9XqSZHJyMiMjI1m/fn1jRwoANKVZrWzcfffd6evry3PPPZfnnnsuv//973P69Ol0dXXl0KFDefe7352DBw+mp6cna9asKTVmAKCJzDg2vv/972fLli1TKxhJsnTp0vzxj3/M3r17s3379hw7diyVSiV79uxJS0tLkQEDAM1lxrGxadOmbNq06ZzfW7ZsWe65554kyW233daYkQEwKzO5V8vIXRvmYSQwnXujAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIqa9Z8rh5JmcukeXIocGzQzKxsAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABFuTcKr2om92QYuWvDPIwEgGZkZQMAKEpsAABFiQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFOVGbDTETG7WBsClycoGAFCU2AAAihIbAEBRYgMAKEpsAABFuRrlEucqEgBKs7IBABQlNgCAosQGAFCU2AAAihIbAEBRrkZZgBp1hcjIXRsash9g8fDvCxeDlQ0AoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUWIDACjqgmPjxRdfTLVabeRYAIBFaNaxUavV8t3vfjd9fX351a9+NfX88PBwhoaGsnv37gwODubEiRMNHSgA0Jxm/RdEn3766axfvz5/+MMfpp6r1WrZuHFjdu7cmYGBgaxatSqbN29OpVJp6GABgOYz65WNq666Kn/zN38z7bn9+/fn+PHj6e/vT5IMDAzk6NGjOXLkSGNGCQA0rYacIFqpVNLb25u2trYkSWtra3p7e3PgwIFzbj8xMZHx8fFpDwBgcWpIbIyNjaWjo2Pac52dnTl58uQ5t9+xY0c6OzunHt3d3Y0YBgCwADUkNtra2qZWNc6q1Wqp1Wrn3H7btm2pVqtTj9HR0UYMAwBYgBpyi/kVK1bk8OHD056rVqtZuXLlObdvb29Pe3t7I340ALDANWRlY926dRkeHk69Xk+STE5OZmRkJOvXr2/E7gGAJnZBsfGXH4+sXbs2XV1dOXToUJLk4MGD6enpyZo1a+Y+QgCgqc36Y5T/+Z//ybe//e0kyb333purr746b3nLW7J3795s3749x44dS6VSyZ49e9LS0tLwAQMAzaWlfvazj4tofHw8nZ2dqVarr7iq5VLUs3XfxR4CwF81cteGiz0EFoCZ/v52IzYAoCixAQAUJTYAgKLEBgBQlNgAAIoSGwBAUQ35c+UA8Jdmchm/S2gvDVY2AICixAYAUJTYAACKEhsAQFFiAwAoytUoDeTMawB4JSsbAEBRYgMAKEpsAABFiQ0AoCixAQAU5WoUAC6aRl3F52rAhc3KBgBQlNgAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFCU2AICixAYAUJTYAACKEhsAQFFiAwAoyo3Y5tlMbhYEsND5t4zZsLIBABQlNgCAosQGAFCU2AAAihIbAEBRi/5qlJmcMT1y14aG7AeAxvPvb/OzsgEAFCU2AICixAYAUJTYAACKEhsAQFGL/mqUmXCmM8Di16h/62dyBSPTWdkAAIoSGwBAUWIDAChKbAAARYkNAKAosQEAFOXSVwBosEbdBHSh/awLZWUDACiqYbExPDycoaGh7N69O4ODgzlx4kSjdg0ANLGGfIxSq9WycePG7Ny5MwMDA1m1alU2b96cSqXSiN0DAE2sISsb+/fvz/Hjx9Pf358kGRgYyNGjR3PkyJFG7B4AaGINWdmoVCrp7e1NW1tbkqS1tTW9vb05cOBA3vnOd75i+4mJiUxMTEx9Xa1WkyTj4+ONGM40tYkXGr5PAC5dM/ldNZPfPY36nTefP+t8+63X6391u4bExtjYWDo6OqY919nZmZMnT55z+x07duSOO+54xfPd3d2NGA4AFNN598Laz0L4Wc8//3w6OzvP+/2GxEZbW9vUqsZZtVottVrtnNtv27YtW7Zsmbbts88+m+XLl6elpaURQ+I8xsfH093dndHR0VcEIguHeVr4zFFzME9l1ev1PP/88+nq6vqr2zUkNlasWJHDhw9Pe65arWblypXn3L69vT3t7e3Tnnvta1/biKEwQx0dHQ68JmCeFj5z1BzMUzl/bUXjrIacILpu3boMDw9PfWYzOTmZkZGRrF+/vhG7BwCaWENiY+3atenq6sqhQ4eSJAcPHkxPT0/WrFnTiN0DAE2sIR+jLFmyJHv37s327dtz7NixVCqV7Nmzx/kXC1B7e3v+9V//9RUfY7GwmKeFzxw1B/O0MLTUX+16FQCAOXBvFACgKLEBABQlNgCAohpygijNZXJyMt/73vfy7LPP5vrrr8+73vWuiz0kzmEm81Sv1/Pkk0++6h/UAf46x1JZVjYWieHh4QwNDWX37t0ZHBzMiRMnzrnd2NhYrr/++pw6dSpbtmyZ9gvs7rvvzp133pnbb789X/va1+Zr6JeURszTvffem5aWlrS0tGTJkiU5fvz4fA3/kjCTOfrCF74wNQdnH5s2bZr6vmOpvEbMk2Np/ljZWARqtVo2btyYnTt3ZmBgIKtWrcrmzZtTqVSmbTc5OZmbbropN910U4aGhqZ977777suPfvSjHDx4MEly/fXX59prr8173/veeXsfi10j5ilJHnrooak7Kl9xxRV529veNi/jvxTMZI4mJydz5syZPProo1OXU37zm9+cmgfHUnmNmKfEsTSv6jS9Bx54oH7FFVfUX3rppXq9Xq+fPn26vnTp0vovf/nLadt961vfqnd2dk5t93Jr1qyp/9u//dvU13feeWf9fe97X9mBX2IaMU+/+MUv6jfeeGP9wQcfrE9OTs7LuC8lM5mjP/3pT/Xx8fFpr+vv768/9dRT9XrdsTQfGjFPjqX55WOURaBSqaS3t3fqZnitra3p7e3NgQMHpm33ve99LytWrMiWLVvy9re/PR/84Afz7LPP5qWXXsrDDz+c1atXT23b19f3itczN3OdpyT59a9/naeeeirvec97cs011+Thhx+e9/exmM1kjq688sosW7Zs6uunnnoqSfKGN7zBsTRP5jpPiWNpvomNRWBsbOwVNxjq7OzMyZMnpz139OjRfPSjH82uXbty5MiRPP3009m6dWueeeaZnD59eto+Ojs78+KLL+a5556bl/dwKZjrPCXJZz/72fzmN7/JI488kquvvjo33XRTXnzxxXl7D4vdTOfo5e6///5s2LAhSRxL82Su85Q4luab2FgE2trapgr/rFqtllqtNu25F198MTfccMPUaz7xiU9k3759U699+T7OvvYv98GFm+s8vdzq1atz//3359SpU3nooYeKjvtSMtM5erm9e/fm/e9//9TrX/7fs69/+X+Zu7nO08s5luaH2FgEVqxYkfHx8WnPVavVrFy5ctpzV199df785z9Pfd3d3Z3nnnsuy5cvz+WXXz5tH9VqNVdccUWWL19edvCXkLnO01+66qqrsnbt2lSr1TIDvgTNdI7O+vOf/5zh4eFce+21SeJYmidznae/5FgqT2wsAuvWrcvw8HDq/+82N5OTkxkZGcn69eunbXf99ddPu7Tr1KlT6enpSUtLS9797nfnd7/73dT3Hn/88axbt25exn+pmOs8ncuZM2emnR/A3Mx0js7av39/brzxxqmvHUvzY67zdC6OpbLExiKwdu3adHV15dChQ0mSgwcPpqenJ2vWrMkdd9yRY8eOJUn+8R//MT/4wQ+mXnf48OF8+tOfTpJ88pOfnLZU/9Of/jSf+tSn5vFdLH5znafTp0/nq1/9aoaHh5MkjzzySNrb2/O3f/u38/9mFqmZztFZ51qadyyVN9d5cizNP3d9XSQef/zxbN++Pe9617tSqVTyla98JX19ffm7v/u73H777fnQhz6U5P/+2NBjjz2W7u7uPPPMM/nqV7+a1tbWJMmdd96ZU6dO5cyZM1m6dGluv/32i/mWFqW5zNPp06dz44035tFHH83Q0FA6OjryT//0T7nyyisv8rtaXGY6R2fOnElfX18effTRV5w/4Fgqby7zNDEx4ViaZ2IDACjKxygAQFFiAwAoSmwAAEWJDQCgKLEBABQlNgCAosQGAFCU2AAAihIbAEBRYgMAKEpsAABF/S+KFwdib/9OrgAAAABJRU5ErkJggg==\n",
1697
+ "text/plain": [
1698
+ "<Figure size 640x480 with 1 Axes>"
1699
+ ]
1700
+ },
1701
+ "metadata": {},
1702
+ "output_type": "display_data"
1703
+ }
1704
+ ],
1705
+ "source": [
1706
+ "plt.hist(ppz[m], bins =50)"
1707
+ ]
1708
+ },
1709
+ {
1710
+ "cell_type": "code",
1711
+ "execution_count": 306,
1712
+ "id": "a9f7342a-4b24-48bf-b4dc-3b74380fa042",
1713
+ "metadata": {
1714
+ "tags": []
1715
+ },
1716
+ "outputs": [
1717
+ {
1718
+ "data": {
1719
+ "text/plain": [
1720
+ "0.6869"
1721
+ ]
1722
+ },
1723
+ "execution_count": 306,
1724
+ "metadata": {},
1725
+ "output_type": "execute_result"
1726
+ }
1727
+ ],
1728
+ "source": [
1729
+ "specz[m]"
1730
+ ]
1731
+ },
1732
+ {
1733
+ "cell_type": "code",
1734
+ "execution_count": 284,
1735
+ "id": "b0d9577b-5534-49be-8510-2e2ee65d7dce",
1736
+ "metadata": {
1737
+ "tags": []
1738
+ },
1739
+ "outputs": [],
1740
+ "source": [
1741
+ "OVERFITTING? DIFFERENCE TRAIN TEST? CHECK!"
1742
+ ]
1743
+ },
1744
+ {
1745
+ "cell_type": "code",
1746
+ "execution_count": 259,
1747
+ "id": "21e8e786-5cf9-44f4-b6a7-e8fbb0d36d44",
1748
+ "metadata": {
1749
+ "tags": []
1750
+ },
1751
+ "outputs": [],
1752
+ "source": []
1753
+ },
1754
+ {
1755
+ "cell_type": "code",
1756
+ "execution_count": 266,
1757
+ "id": "49174198-d5e3-490d-b448-e509f07ac30f",
1758
+ "metadata": {
1759
+ "tags": []
1760
+ },
1761
+ "outputs": [
1762
+ {
1763
+ "data": {
1764
+ "text/plain": [
1765
+ "tensor([1.0001, 1.0000, 1.0001, 1.0001, 0.9999, 1.0000, 1.0000, 1.0001, 0.9999,\n",
1766
+ " 1.0000], device='cuda:0', grad_fn=<ExpBackward0>)"
1767
+ ]
1768
+ },
1769
+ "execution_count": 266,
1770
+ "metadata": {},
1771
+ "output_type": "execute_result"
1772
+ }
1773
+ ],
1774
+ "source": [
1775
+ "torch.exp(log_var[0])"
1776
+ ]
1777
+ },
1778
+ {
1779
+ "cell_type": "code",
1780
+ "execution_count": 267,
1781
+ "id": "f1248322-b424-4855-bc8b-ce8af1fcb275",
1782
+ "metadata": {
1783
+ "tags": []
1784
+ },
1785
+ "outputs": [
1786
+ {
1787
+ "data": {
1788
+ "text/plain": [
1789
+ "tensor([-1.7762e-05, -3.3602e-06, -8.1182e-05, -1.8381e-05, 8.2459e-05,\n",
1790
+ " 2.9923e-06, 1.5706e-04, 2.2795e-04, -1.3318e-05, -1.1017e-05],\n",
1791
+ " device='cuda:0', grad_fn=<SelectBackward0>)"
1792
+ ]
1793
+ },
1794
+ "execution_count": 267,
1795
+ "metadata": {},
1796
+ "output_type": "execute_result"
1797
+ }
1798
+ ],
1799
+ "source": [
1800
+ "mu[0]"
1801
+ ]
1802
+ },
1803
+ {
1804
+ "cell_type": "code",
1805
+ "execution_count": null,
1806
+ "id": "d14b8ae2-6bf7-47da-9725-57cc3f2b6cca",
1807
+ "metadata": {},
1808
+ "outputs": [],
1809
+ "source": []
1810
+ }
1811
+ ],
1812
+ "metadata": {
1813
+ "kernelspec": {
1814
+ "display_name": "DLenv2",
1815
+ "language": "python",
1816
+ "name": "dlenv2"
1817
+ },
1818
+ "language_info": {
1819
+ "codemirror_mode": {
1820
+ "name": "ipython",
1821
+ "version": 3
1822
+ },
1823
+ "file_extension": ".py",
1824
+ "mimetype": "text/x-python",
1825
+ "name": "python",
1826
+ "nbconvert_exporter": "python",
1827
+ "pygments_lexer": "ipython3",
1828
+ "version": "3.9.7"
1829
+ }
1830
+ },
1831
+ "nbformat": 4,
1832
+ "nbformat_minor": 5
1833
+ }
notebooks/.ipynb_checkpoints/HandsON_outreach-Copy1-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Insight_notebook-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_Freia-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-Copy1-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-Copy2-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-Copy3-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_TEST-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_Xiao+19-Copy1-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_Xiao+19-Copy2-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/Normalizing_flows_Xiao+19-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/PLOTS-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/.ipynb_checkpoints/match_catalogues-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
notebooks/.ipynb_checkpoints/toy_test-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
notebooks/CVAE-Copy1.ipynb ADDED
@@ -0,0 +1,2177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 293,
6
+ "id": "10a00e46-827a-4278-a715-99526591a0a7",
7
+ "metadata": {
8
+ "tags": []
9
+ },
10
+ "outputs": [],
11
+ "source": [
12
+ "import torch.nn as nn\n",
13
+ "import torch\n",
14
+ "class CondVAE(nn.Module):\n",
15
+ " def __init__(self, dim_input, latent_dim=10):\n",
16
+ " super(CondVAE, self).__init__()\n",
17
+ " \n",
18
+ " self.latent_dim = latent_dim\n",
19
+ "\n",
20
+ " # Encoder\n",
21
+ " self.encoder = nn.Sequential(\n",
22
+ " nn.Linear(in_features=dim_input, out_features=100),\n",
23
+ " nn.ReLU(),\n",
24
+ " nn.Linear(in_features=100, out_features=200),\n",
25
+ " nn.ReLU(),\n",
26
+ " nn.Linear(in_features=200, out_features=300),\n",
27
+ " nn.ReLU(),\n",
28
+ " nn.Linear(in_features=300, out_features=200),\n",
29
+ " nn.ReLU(),\n",
30
+ " nn.Linear(in_features=200, out_features=100),\n",
31
+ " nn.ReLU(),\n",
32
+ " nn.Flatten()\n",
33
+ " )\n",
34
+ " \n",
35
+ " self.fc_mu = nn.Linear(100, latent_dim)\n",
36
+ " #self.fc_logvar = nn.Sequential(nn.Linear(100, latent_dim),nn.Softplus())\n",
37
+ " self.fc_logvar = nn.Linear(100, latent_dim)\n",
38
+ "\n",
39
+ " # Decoder\n",
40
+ " self.decoder = nn.Sequential(\n",
41
+ " nn.Linear(in_features=latent_dim, out_features=100),\n",
42
+ " nn.ReLU(),\n",
43
+ " nn.Linear(in_features=100, out_features=200),\n",
44
+ " nn.ReLU(),\n",
45
+ " nn.Linear(in_features=200, out_features=300),\n",
46
+ " nn.ReLU(),\n",
47
+ " nn.Linear(in_features=300, out_features=200),\n",
48
+ " nn.ReLU(),\n",
49
+ " nn.Linear(in_features=200, out_features=100),\n",
50
+ " nn.ReLU(),\n",
51
+ " nn.Linear(in_features=100, out_features=6),\n",
52
+ " )\n",
53
+ " \n",
54
+ " self.regressor = nn.Sequential(\n",
55
+ " nn.Linear(in_features=latent_dim, out_features=100),\n",
56
+ " nn.ReLU(),\n",
57
+ " nn.Linear(in_features=100, out_features=200),\n",
58
+ " nn.ReLU(),\n",
59
+ " nn.Linear(in_features=200, out_features=300),\n",
60
+ " nn.ReLU(),\n",
61
+ " nn.Linear(in_features=300, out_features=200),\n",
62
+ " nn.ReLU(),\n",
63
+ " nn.Linear(in_features=200, out_features=100),\n",
64
+ " nn.ReLU(),\n",
65
+ " nn.Linear(in_features=100, out_features=1),\n",
66
+ " )\n",
67
+ "\n",
68
+ " def encode(self, x):\n",
69
+ " x = self.encoder(x)\n",
70
+ " mu = self.fc_mu(x)\n",
71
+ " log_var = self.fc_logvar(x)\n",
72
+ "\n",
73
+ " return mu, log_var\n",
74
+ " \n",
75
+ " def decode(self, z):\n",
76
+ " \n",
77
+ " return self.decoder(z) \n",
78
+ " \n",
79
+ " def sampling(self, mu, log_var):\n",
80
+ " # calculate standard deviation\n",
81
+ " std = log_var.mul(0.5).exp_()\n",
82
+ " # create noise tensor of same size as std to add to the latent vector\n",
83
+ " eps = torch.cuda.FloatTensor(std.size()).normal_()\n",
84
+ " # multiply eps with std to scale the random noise according to the learned distribution + add combined\n",
85
+ " return eps.mul(std).add_(mu) # return z sample \n",
86
+ "\n",
87
+ " def forward(self, x):\n",
88
+ " mu, log_var = self.encode(x)\n",
89
+ " z = self.sampling(mu, log_var)\n",
90
+ " \n",
91
+ " return self.decode(z), self.regressor(z), mu, log_var\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": 294,
97
+ "id": "8bbbe719-f9a3-4ace-ac4c-ed29ec4f9486",
98
+ "metadata": {
99
+ "tags": []
100
+ },
101
+ "outputs": [],
102
+ "source": [
103
+ "import tqdm\n",
104
+ "import torch\n",
105
+ "import torch.nn as nn\n",
106
+ "\n",
107
+ "def condvae_loss(recons, pred, data_input, label, mu, logvar):\n",
108
+ " \"\"\"\n",
109
+ " Calculate the conditional Variational Autoencoder (cVAE) loss.\n",
110
+ "\n",
111
+ " This function computes the cVAE loss, which consists of two components:\n",
112
+ " - Reconstruction loss: Measures the discrepancy between the reconstructed\n",
113
+ " data and the original input.\n",
114
+ " - KL divergence loss: Quantifies the difference between the learned latent\n",
115
+ " distribution and the desired prior distribution (Gaussian).\n",
116
+ "\n",
117
+ " Args:\n",
118
+ " recon_x (torch.Tensor): Reconstructed data from the VAE.\n",
119
+ " x (torch.Tensor): Original input data.\n",
120
+ " mu (torch.Tensor): Latent variable mean.\n",
121
+ " logvar (torch.Tensor): Logarithm of latent variable variance.\n",
122
+ "\n",
123
+ " Returns:\n",
124
+ " torch.Tensor: Computed cVAE loss.\n",
125
+ " \"\"\"\n",
126
+ " \n",
127
+ " # MSE loss element-wise and sums up the individual losses\n",
128
+ " regression_loss = nn.L1Loss(reduction='mean')(pred, label)\n",
129
+ " decoder_loss = nn.L1Loss(reduction='mean')(recons, data_input)\n",
130
+ " \n",
131
+ " # quantifies the difference between the learned latent distribution and the desired prior distribution (Gaussian)\n",
132
+ " kl_divergence = 0 #-0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())\n",
133
+ " \n",
134
+ " \n",
135
+ " return regression_loss + kl_divergence + decoder_loss\n",
136
+ "\n",
137
+ "def VAE_trainEpoch(model, optimizer, train_loader, dim_in=100):\n",
138
+ " \"\"\"\n",
139
+ " Train a Variational Autoencoder (VAE) for one epoch.\n",
140
+ "\n",
141
+ " This function trains a VAE for one epoch using the provided data loader.\n",
142
+ " It calculates the cVAE loss, performs backpropagation, and updates the model's parameters.\n",
143
+ "\n",
144
+ " Args:\n",
145
+ " model (nn.Module): VAE model to be trained.\n",
146
+ " optimizer (torch.optim.Optimizer): Optimizer for updating model parameters.\n",
147
+ " train_loader (DataLoader): DataLoader containing training data.\n",
148
+ " dim_in (int): Dimensionality of the input noise.\n",
149
+ "\n",
150
+ " Returns:\n",
151
+ " float: Average loss for the epoch.\n",
152
+ " \"\"\"\n",
153
+ " model = model.train()\n",
154
+ " device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
155
+ " total_loss = 0\n",
156
+ "\n",
157
+ " progress_bar = tqdm.tqdm(train_loader, desc=\"Epoch Progress\", leave=False)\n",
158
+ " for data, label in progress_bar:\n",
159
+ " data = data.to(device)\n",
160
+ " label = label.unsqueeze(1).cuda()\n",
161
+ " optimizer.zero_grad()\n",
162
+ "\n",
163
+ "\n",
164
+ " recon_batch, pred_batch, mu, log_var = model(data)\n",
165
+ " loss = condvae_loss(recon_batch, pred_batch, data, label, mu, log_var)\n",
166
+ "\n",
167
+ " loss.backward()\n",
168
+ " optimizer.step()\n",
169
+ "\n",
170
+ " total_loss += loss.item()\n",
171
+ " progress_bar.set_postfix({\"Loss\": total_loss / (progress_bar.n + 1)})\n",
172
+ "\n",
173
+ " return total_loss / len(train_loader)\n",
174
+ "\n",
175
+ "def VAE_train(model, optimizer, train_loader, epochs, dim_in, save_path=None):\n",
176
+ " \"\"\"\n",
177
+ " Train a Variational Autoencoder (VAE) for multiple epochs.\n",
178
+ "\n",
179
+ " This function trains a VAE for the specified number of epochs using the provided data loader.\n",
180
+ " It prints the epoch progress and the computed loss for each epoch.\n",
181
+ "\n",
182
+ " Args:\n",
183
+ " model (nn.Module): VAE model to be trained.\n",
184
+ " optimizer (torch.optim.Optimizer): Optimizer for updating model parameters.\n",
185
+ " train_loader (DataLoader): DataLoader containing training data.\n",
186
+ " epochs (int): Number of epochs for training.\n",
187
+ "\n",
188
+ " Returns:\n",
189
+ " None\n",
190
+ " \"\"\"\n",
191
+ " for epoch in range(epochs):\n",
192
+ " print(f\"Epoch {epoch + 1}/{epochs}\")\n",
193
+ " epoch_loss = VAE_trainEpoch(model, optimizer, train_loader, dim_in)\n",
194
+ " print(f\"Epoch {epoch + 1}/{epochs}, Loss: {epoch_loss:.4f}\")\n",
195
+ " \n",
196
+ " if save_path!=None:\n",
197
+ " torch.save(model, save_path)\n",
198
+ "\n"
199
+ ]
200
+ },
201
+ {
202
+ "cell_type": "code",
203
+ "execution_count": 295,
204
+ "id": "11aaa0e9-e745-483a-887d-d851e791f8e4",
205
+ "metadata": {
206
+ "tags": []
207
+ },
208
+ "outputs": [],
209
+ "source": [
210
+ "import numpy as np\n",
211
+ "import pandas as pd\n",
212
+ "from astropy.io import fits\n",
213
+ "import os\n",
214
+ "from astropy.table import Table\n",
215
+ "from scipy.spatial import KDTree\n",
216
+ "\n",
217
+ "import matplotlib.pyplot as plt\n",
218
+ "\n",
219
+ "from IPython.display import Image\n",
220
+ "from IPython.core.display import HTML "
221
+ ]
222
+ },
223
+ {
224
+ "cell_type": "code",
225
+ "execution_count": 296,
226
+ "id": "0814440a-e341-4540-bfba-466b74b9873d",
227
+ "metadata": {
228
+ "tags": []
229
+ },
230
+ "outputs": [],
231
+ "source": [
232
+ "import torch\n",
233
+ "from torch.utils.data import DataLoader, dataset, TensorDataset\n",
234
+ "from torch import nn, optim\n",
235
+ "from torch.optim import lr_scheduler"
236
+ ]
237
+ },
238
+ {
239
+ "cell_type": "code",
240
+ "execution_count": 297,
241
+ "id": "8ecf9b60-bd03-4fa6-9516-c767d04b2071",
242
+ "metadata": {
243
+ "tags": []
244
+ },
245
+ "outputs": [],
246
+ "source": [
247
+ "import sys\n",
248
+ "sys.path.append('../insight')\n",
249
+ "from archive import archive \n",
250
+ "from insight_arch import Photoz_network\n",
251
+ "from insight import Insight_module\n",
252
+ "from utils import sigma68, nmad, plot_photoz_estimates\n",
253
+ "from scipy import stats"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": 298,
259
+ "id": "1277097d-e4bb-4bdd-b1f4-bccc88be0169",
260
+ "metadata": {
261
+ "tags": []
262
+ },
263
+ "outputs": [],
264
+ "source": [
265
+ "from matplotlib import rcParams\n",
266
+ "rcParams[\"mathtext.fontset\"] = \"stix\"\n",
267
+ "rcParams[\"font.family\"] = \"STIXGeneral\"\n",
268
+ "parent_dir = '/data/astro/scratch/lcabayol/Euclid/NNphotozs/Euclid_EXT_MER_PHZ_DC2_v1.5'"
269
+ ]
270
+ },
271
+ {
272
+ "cell_type": "code",
273
+ "execution_count": 65,
274
+ "id": "5d2d3713-ff7f-4f16-860f-cf5ff42801b1",
275
+ "metadata": {
276
+ "tags": []
277
+ },
278
+ "outputs": [],
279
+ "source": [
280
+ "photoz_archive = archive(path = parent_dir, Qz_cut=1)\n",
281
+ "f, ferr, specz, specqz = photoz_archive.get_training_data()"
282
+ ]
283
+ },
284
+ {
285
+ "cell_type": "code",
286
+ "execution_count": 299,
287
+ "id": "45af2d9e-1160-4859-9888-f5daf62df84a",
288
+ "metadata": {
289
+ "tags": []
290
+ },
291
+ "outputs": [],
292
+ "source": [
293
+ "dset = TensorDataset(torch.Tensor(f),torch.Tensor(specz))\n",
294
+ "loader = DataLoader(dset, batch_size=100, shuffle=True)"
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "code",
299
+ "execution_count": 300,
300
+ "id": "dad8733c-c36a-4e86-b32d-41c244ba6259",
301
+ "metadata": {
302
+ "tags": []
303
+ },
304
+ "outputs": [],
305
+ "source": [
306
+ "dim_input=6\n",
307
+ "latent_dim=1\n",
308
+ "epochs=100\n",
309
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n"
310
+ ]
311
+ },
312
+ {
313
+ "cell_type": "code",
314
+ "execution_count": 301,
315
+ "id": "ef0b6560-dd3d-4b9d-a14c-43bf9338f7a4",
316
+ "metadata": {
317
+ "tags": []
318
+ },
319
+ "outputs": [],
320
+ "source": [
321
+ "vae = CondVAE(dim_input, latent_dim=latent_dim).to(device)\n",
322
+ "optimizer = optim.Adam(vae.parameters(), lr=1e-3, weight_decay=1e-4)\n"
323
+ ]
324
+ },
325
+ {
326
+ "cell_type": "code",
327
+ "execution_count": 302,
328
+ "id": "dd04d484-d14d-488d-a640-180fb6ab1001",
329
+ "metadata": {
330
+ "tags": []
331
+ },
332
+ "outputs": [
333
+ {
334
+ "name": "stdout",
335
+ "output_type": "stream",
336
+ "text": [
337
+ "Epoch 1/100\n"
338
+ ]
339
+ },
340
+ {
341
+ "name": "stderr",
342
+ "output_type": "stream",
343
+ "text": [
344
+ " \r"
345
+ ]
346
+ },
347
+ {
348
+ "name": "stdout",
349
+ "output_type": "stream",
350
+ "text": [
351
+ "Epoch 1/100, Loss: 0.7994\n",
352
+ "Epoch 2/100\n"
353
+ ]
354
+ },
355
+ {
356
+ "name": "stderr",
357
+ "output_type": "stream",
358
+ "text": [
359
+ " \r"
360
+ ]
361
+ },
362
+ {
363
+ "name": "stdout",
364
+ "output_type": "stream",
365
+ "text": [
366
+ "Epoch 2/100, Loss: 0.7418\n",
367
+ "Epoch 3/100\n"
368
+ ]
369
+ },
370
+ {
371
+ "name": "stderr",
372
+ "output_type": "stream",
373
+ "text": [
374
+ " \r"
375
+ ]
376
+ },
377
+ {
378
+ "name": "stdout",
379
+ "output_type": "stream",
380
+ "text": [
381
+ "Epoch 3/100, Loss: 0.7436\n",
382
+ "Epoch 4/100\n"
383
+ ]
384
+ },
385
+ {
386
+ "name": "stderr",
387
+ "output_type": "stream",
388
+ "text": [
389
+ " \r"
390
+ ]
391
+ },
392
+ {
393
+ "name": "stdout",
394
+ "output_type": "stream",
395
+ "text": [
396
+ "Epoch 4/100, Loss: 0.7406\n",
397
+ "Epoch 5/100\n"
398
+ ]
399
+ },
400
+ {
401
+ "name": "stderr",
402
+ "output_type": "stream",
403
+ "text": [
404
+ " \r"
405
+ ]
406
+ },
407
+ {
408
+ "name": "stdout",
409
+ "output_type": "stream",
410
+ "text": [
411
+ "Epoch 5/100, Loss: 0.7395\n",
412
+ "Epoch 6/100\n"
413
+ ]
414
+ },
415
+ {
416
+ "name": "stderr",
417
+ "output_type": "stream",
418
+ "text": [
419
+ " \r"
420
+ ]
421
+ },
422
+ {
423
+ "name": "stdout",
424
+ "output_type": "stream",
425
+ "text": [
426
+ "Epoch 6/100, Loss: 0.7416\n",
427
+ "Epoch 7/100\n"
428
+ ]
429
+ },
430
+ {
431
+ "name": "stderr",
432
+ "output_type": "stream",
433
+ "text": [
434
+ " \r"
435
+ ]
436
+ },
437
+ {
438
+ "name": "stdout",
439
+ "output_type": "stream",
440
+ "text": [
441
+ "Epoch 7/100, Loss: 0.7402\n",
442
+ "Epoch 8/100\n"
443
+ ]
444
+ },
445
+ {
446
+ "name": "stderr",
447
+ "output_type": "stream",
448
+ "text": [
449
+ " \r"
450
+ ]
451
+ },
452
+ {
453
+ "name": "stdout",
454
+ "output_type": "stream",
455
+ "text": [
456
+ "Epoch 8/100, Loss: 0.7400\n",
457
+ "Epoch 9/100\n"
458
+ ]
459
+ },
460
+ {
461
+ "name": "stderr",
462
+ "output_type": "stream",
463
+ "text": [
464
+ " \r"
465
+ ]
466
+ },
467
+ {
468
+ "name": "stdout",
469
+ "output_type": "stream",
470
+ "text": [
471
+ "Epoch 9/100, Loss: 0.7397\n",
472
+ "Epoch 10/100\n"
473
+ ]
474
+ },
475
+ {
476
+ "name": "stderr",
477
+ "output_type": "stream",
478
+ "text": [
479
+ " \r"
480
+ ]
481
+ },
482
+ {
483
+ "name": "stdout",
484
+ "output_type": "stream",
485
+ "text": [
486
+ "Epoch 10/100, Loss: 0.7380\n",
487
+ "Epoch 11/100\n"
488
+ ]
489
+ },
490
+ {
491
+ "name": "stderr",
492
+ "output_type": "stream",
493
+ "text": [
494
+ " \r"
495
+ ]
496
+ },
497
+ {
498
+ "name": "stdout",
499
+ "output_type": "stream",
500
+ "text": [
501
+ "Epoch 11/100, Loss: 0.7407\n",
502
+ "Epoch 12/100\n"
503
+ ]
504
+ },
505
+ {
506
+ "name": "stderr",
507
+ "output_type": "stream",
508
+ "text": [
509
+ " \r"
510
+ ]
511
+ },
512
+ {
513
+ "name": "stdout",
514
+ "output_type": "stream",
515
+ "text": [
516
+ "Epoch 12/100, Loss: 0.7381\n",
517
+ "Epoch 13/100\n"
518
+ ]
519
+ },
520
+ {
521
+ "name": "stderr",
522
+ "output_type": "stream",
523
+ "text": [
524
+ " \r"
525
+ ]
526
+ },
527
+ {
528
+ "name": "stdout",
529
+ "output_type": "stream",
530
+ "text": [
531
+ "Epoch 13/100, Loss: 0.7408\n",
532
+ "Epoch 14/100\n"
533
+ ]
534
+ },
535
+ {
536
+ "name": "stderr",
537
+ "output_type": "stream",
538
+ "text": [
539
+ " \r"
540
+ ]
541
+ },
542
+ {
543
+ "name": "stdout",
544
+ "output_type": "stream",
545
+ "text": [
546
+ "Epoch 14/100, Loss: 0.7390\n",
547
+ "Epoch 15/100\n"
548
+ ]
549
+ },
550
+ {
551
+ "name": "stderr",
552
+ "output_type": "stream",
553
+ "text": [
554
+ " \r"
555
+ ]
556
+ },
557
+ {
558
+ "name": "stdout",
559
+ "output_type": "stream",
560
+ "text": [
561
+ "Epoch 15/100, Loss: 0.7387\n",
562
+ "Epoch 16/100\n"
563
+ ]
564
+ },
565
+ {
566
+ "name": "stderr",
567
+ "output_type": "stream",
568
+ "text": [
569
+ " \r"
570
+ ]
571
+ },
572
+ {
573
+ "name": "stdout",
574
+ "output_type": "stream",
575
+ "text": [
576
+ "Epoch 16/100, Loss: 0.7384\n",
577
+ "Epoch 17/100\n"
578
+ ]
579
+ },
580
+ {
581
+ "name": "stderr",
582
+ "output_type": "stream",
583
+ "text": [
584
+ " \r"
585
+ ]
586
+ },
587
+ {
588
+ "name": "stdout",
589
+ "output_type": "stream",
590
+ "text": [
591
+ "Epoch 17/100, Loss: 0.7382\n",
592
+ "Epoch 18/100\n"
593
+ ]
594
+ },
595
+ {
596
+ "name": "stderr",
597
+ "output_type": "stream",
598
+ "text": [
599
+ " \r"
600
+ ]
601
+ },
602
+ {
603
+ "name": "stdout",
604
+ "output_type": "stream",
605
+ "text": [
606
+ "Epoch 18/100, Loss: 0.7377\n",
607
+ "Epoch 19/100\n"
608
+ ]
609
+ },
610
+ {
611
+ "name": "stderr",
612
+ "output_type": "stream",
613
+ "text": [
614
+ " \r"
615
+ ]
616
+ },
617
+ {
618
+ "name": "stdout",
619
+ "output_type": "stream",
620
+ "text": [
621
+ "Epoch 19/100, Loss: 0.7382\n",
622
+ "Epoch 20/100\n"
623
+ ]
624
+ },
625
+ {
626
+ "name": "stderr",
627
+ "output_type": "stream",
628
+ "text": [
629
+ " \r"
630
+ ]
631
+ },
632
+ {
633
+ "name": "stdout",
634
+ "output_type": "stream",
635
+ "text": [
636
+ "Epoch 20/100, Loss: 0.7383\n",
637
+ "Epoch 21/100\n"
638
+ ]
639
+ },
640
+ {
641
+ "name": "stderr",
642
+ "output_type": "stream",
643
+ "text": [
644
+ " \r"
645
+ ]
646
+ },
647
+ {
648
+ "name": "stdout",
649
+ "output_type": "stream",
650
+ "text": [
651
+ "Epoch 21/100, Loss: 0.7385\n",
652
+ "Epoch 22/100\n"
653
+ ]
654
+ },
655
+ {
656
+ "name": "stderr",
657
+ "output_type": "stream",
658
+ "text": [
659
+ " \r"
660
+ ]
661
+ },
662
+ {
663
+ "name": "stdout",
664
+ "output_type": "stream",
665
+ "text": [
666
+ "Epoch 22/100, Loss: 0.7376\n",
667
+ "Epoch 23/100\n"
668
+ ]
669
+ },
670
+ {
671
+ "name": "stderr",
672
+ "output_type": "stream",
673
+ "text": [
674
+ " \r"
675
+ ]
676
+ },
677
+ {
678
+ "name": "stdout",
679
+ "output_type": "stream",
680
+ "text": [
681
+ "Epoch 23/100, Loss: 0.7372\n",
682
+ "Epoch 24/100\n"
683
+ ]
684
+ },
685
+ {
686
+ "name": "stderr",
687
+ "output_type": "stream",
688
+ "text": [
689
+ " \r"
690
+ ]
691
+ },
692
+ {
693
+ "name": "stdout",
694
+ "output_type": "stream",
695
+ "text": [
696
+ "Epoch 24/100, Loss: 0.7380\n",
697
+ "Epoch 25/100\n"
698
+ ]
699
+ },
700
+ {
701
+ "name": "stderr",
702
+ "output_type": "stream",
703
+ "text": [
704
+ " \r"
705
+ ]
706
+ },
707
+ {
708
+ "name": "stdout",
709
+ "output_type": "stream",
710
+ "text": [
711
+ "Epoch 25/100, Loss: 0.7373\n",
712
+ "Epoch 26/100\n"
713
+ ]
714
+ },
715
+ {
716
+ "name": "stderr",
717
+ "output_type": "stream",
718
+ "text": [
719
+ " \r"
720
+ ]
721
+ },
722
+ {
723
+ "name": "stdout",
724
+ "output_type": "stream",
725
+ "text": [
726
+ "Epoch 26/100, Loss: 0.7374\n",
727
+ "Epoch 27/100\n"
728
+ ]
729
+ },
730
+ {
731
+ "name": "stderr",
732
+ "output_type": "stream",
733
+ "text": [
734
+ " \r"
735
+ ]
736
+ },
737
+ {
738
+ "name": "stdout",
739
+ "output_type": "stream",
740
+ "text": [
741
+ "Epoch 27/100, Loss: 0.7373\n",
742
+ "Epoch 28/100\n"
743
+ ]
744
+ },
745
+ {
746
+ "name": "stderr",
747
+ "output_type": "stream",
748
+ "text": [
749
+ " \r"
750
+ ]
751
+ },
752
+ {
753
+ "name": "stdout",
754
+ "output_type": "stream",
755
+ "text": [
756
+ "Epoch 28/100, Loss: 0.7367\n",
757
+ "Epoch 29/100\n"
758
+ ]
759
+ },
760
+ {
761
+ "name": "stderr",
762
+ "output_type": "stream",
763
+ "text": [
764
+ " \r"
765
+ ]
766
+ },
767
+ {
768
+ "name": "stdout",
769
+ "output_type": "stream",
770
+ "text": [
771
+ "Epoch 29/100, Loss: 0.7371\n",
772
+ "Epoch 30/100\n"
773
+ ]
774
+ },
775
+ {
776
+ "name": "stderr",
777
+ "output_type": "stream",
778
+ "text": [
779
+ " \r"
780
+ ]
781
+ },
782
+ {
783
+ "name": "stdout",
784
+ "output_type": "stream",
785
+ "text": [
786
+ "Epoch 30/100, Loss: 0.7370\n",
787
+ "Epoch 31/100\n"
788
+ ]
789
+ },
790
+ {
791
+ "name": "stderr",
792
+ "output_type": "stream",
793
+ "text": [
794
+ " \r"
795
+ ]
796
+ },
797
+ {
798
+ "name": "stdout",
799
+ "output_type": "stream",
800
+ "text": [
801
+ "Epoch 31/100, Loss: 0.7377\n",
802
+ "Epoch 32/100\n"
803
+ ]
804
+ },
805
+ {
806
+ "name": "stderr",
807
+ "output_type": "stream",
808
+ "text": [
809
+ " \r"
810
+ ]
811
+ },
812
+ {
813
+ "name": "stdout",
814
+ "output_type": "stream",
815
+ "text": [
816
+ "Epoch 32/100, Loss: 0.7372\n",
817
+ "Epoch 33/100\n"
818
+ ]
819
+ },
820
+ {
821
+ "name": "stderr",
822
+ "output_type": "stream",
823
+ "text": [
824
+ " \r"
825
+ ]
826
+ },
827
+ {
828
+ "name": "stdout",
829
+ "output_type": "stream",
830
+ "text": [
831
+ "Epoch 33/100, Loss: 0.7365\n",
832
+ "Epoch 34/100\n"
833
+ ]
834
+ },
835
+ {
836
+ "name": "stderr",
837
+ "output_type": "stream",
838
+ "text": [
839
+ " \r"
840
+ ]
841
+ },
842
+ {
843
+ "name": "stdout",
844
+ "output_type": "stream",
845
+ "text": [
846
+ "Epoch 34/100, Loss: 0.7374\n",
847
+ "Epoch 35/100\n"
848
+ ]
849
+ },
850
+ {
851
+ "name": "stderr",
852
+ "output_type": "stream",
853
+ "text": [
854
+ " \r"
855
+ ]
856
+ },
857
+ {
858
+ "name": "stdout",
859
+ "output_type": "stream",
860
+ "text": [
861
+ "Epoch 35/100, Loss: 0.7362\n",
862
+ "Epoch 36/100\n"
863
+ ]
864
+ },
865
+ {
866
+ "name": "stderr",
867
+ "output_type": "stream",
868
+ "text": [
869
+ " \r"
870
+ ]
871
+ },
872
+ {
873
+ "name": "stdout",
874
+ "output_type": "stream",
875
+ "text": [
876
+ "Epoch 36/100, Loss: 0.7370\n",
877
+ "Epoch 37/100\n"
878
+ ]
879
+ },
880
+ {
881
+ "name": "stderr",
882
+ "output_type": "stream",
883
+ "text": [
884
+ " \r"
885
+ ]
886
+ },
887
+ {
888
+ "name": "stdout",
889
+ "output_type": "stream",
890
+ "text": [
891
+ "Epoch 37/100, Loss: 0.7367\n",
892
+ "Epoch 38/100\n"
893
+ ]
894
+ },
895
+ {
896
+ "name": "stderr",
897
+ "output_type": "stream",
898
+ "text": [
899
+ " \r"
900
+ ]
901
+ },
902
+ {
903
+ "name": "stdout",
904
+ "output_type": "stream",
905
+ "text": [
906
+ "Epoch 38/100, Loss: 0.7370\n",
907
+ "Epoch 39/100\n"
908
+ ]
909
+ },
910
+ {
911
+ "name": "stderr",
912
+ "output_type": "stream",
913
+ "text": [
914
+ " \r"
915
+ ]
916
+ },
917
+ {
918
+ "name": "stdout",
919
+ "output_type": "stream",
920
+ "text": [
921
+ "Epoch 39/100, Loss: 0.7363\n",
922
+ "Epoch 40/100\n"
923
+ ]
924
+ },
925
+ {
926
+ "name": "stderr",
927
+ "output_type": "stream",
928
+ "text": [
929
+ " \r"
930
+ ]
931
+ },
932
+ {
933
+ "name": "stdout",
934
+ "output_type": "stream",
935
+ "text": [
936
+ "Epoch 40/100, Loss: 0.7367\n",
937
+ "Epoch 41/100\n"
938
+ ]
939
+ },
940
+ {
941
+ "name": "stderr",
942
+ "output_type": "stream",
943
+ "text": [
944
+ " \r"
945
+ ]
946
+ },
947
+ {
948
+ "name": "stdout",
949
+ "output_type": "stream",
950
+ "text": [
951
+ "Epoch 41/100, Loss: 0.7368\n",
952
+ "Epoch 42/100\n"
953
+ ]
954
+ },
955
+ {
956
+ "name": "stderr",
957
+ "output_type": "stream",
958
+ "text": [
959
+ " \r"
960
+ ]
961
+ },
962
+ {
963
+ "name": "stdout",
964
+ "output_type": "stream",
965
+ "text": [
966
+ "Epoch 42/100, Loss: 0.7376\n",
967
+ "Epoch 43/100\n"
968
+ ]
969
+ },
970
+ {
971
+ "name": "stderr",
972
+ "output_type": "stream",
973
+ "text": [
974
+ " \r"
975
+ ]
976
+ },
977
+ {
978
+ "name": "stdout",
979
+ "output_type": "stream",
980
+ "text": [
981
+ "Epoch 43/100, Loss: 0.7364\n",
982
+ "Epoch 44/100\n"
983
+ ]
984
+ },
985
+ {
986
+ "name": "stderr",
987
+ "output_type": "stream",
988
+ "text": [
989
+ " \r"
990
+ ]
991
+ },
992
+ {
993
+ "name": "stdout",
994
+ "output_type": "stream",
995
+ "text": [
996
+ "Epoch 44/100, Loss: 0.7368\n",
997
+ "Epoch 45/100\n"
998
+ ]
999
+ },
1000
+ {
1001
+ "name": "stderr",
1002
+ "output_type": "stream",
1003
+ "text": [
1004
+ " \r"
1005
+ ]
1006
+ },
1007
+ {
1008
+ "name": "stdout",
1009
+ "output_type": "stream",
1010
+ "text": [
1011
+ "Epoch 45/100, Loss: 0.7366\n",
1012
+ "Epoch 46/100\n"
1013
+ ]
1014
+ },
1015
+ {
1016
+ "name": "stderr",
1017
+ "output_type": "stream",
1018
+ "text": [
1019
+ " \r"
1020
+ ]
1021
+ },
1022
+ {
1023
+ "name": "stdout",
1024
+ "output_type": "stream",
1025
+ "text": [
1026
+ "Epoch 46/100, Loss: 0.7366\n",
1027
+ "Epoch 47/100\n"
1028
+ ]
1029
+ },
1030
+ {
1031
+ "name": "stderr",
1032
+ "output_type": "stream",
1033
+ "text": [
1034
+ " \r"
1035
+ ]
1036
+ },
1037
+ {
1038
+ "name": "stdout",
1039
+ "output_type": "stream",
1040
+ "text": [
1041
+ "Epoch 47/100, Loss: 0.7371\n",
1042
+ "Epoch 48/100\n"
1043
+ ]
1044
+ },
1045
+ {
1046
+ "name": "stderr",
1047
+ "output_type": "stream",
1048
+ "text": [
1049
+ " \r"
1050
+ ]
1051
+ },
1052
+ {
1053
+ "name": "stdout",
1054
+ "output_type": "stream",
1055
+ "text": [
1056
+ "Epoch 48/100, Loss: 0.7367\n",
1057
+ "Epoch 49/100\n"
1058
+ ]
1059
+ },
1060
+ {
1061
+ "name": "stderr",
1062
+ "output_type": "stream",
1063
+ "text": [
1064
+ " \r"
1065
+ ]
1066
+ },
1067
+ {
1068
+ "name": "stdout",
1069
+ "output_type": "stream",
1070
+ "text": [
1071
+ "Epoch 49/100, Loss: 0.7362\n",
1072
+ "Epoch 50/100\n"
1073
+ ]
1074
+ },
1075
+ {
1076
+ "name": "stderr",
1077
+ "output_type": "stream",
1078
+ "text": [
1079
+ " \r"
1080
+ ]
1081
+ },
1082
+ {
1083
+ "name": "stdout",
1084
+ "output_type": "stream",
1085
+ "text": [
1086
+ "Epoch 50/100, Loss: 0.7362\n",
1087
+ "Epoch 51/100\n"
1088
+ ]
1089
+ },
1090
+ {
1091
+ "name": "stderr",
1092
+ "output_type": "stream",
1093
+ "text": [
1094
+ " \r"
1095
+ ]
1096
+ },
1097
+ {
1098
+ "name": "stdout",
1099
+ "output_type": "stream",
1100
+ "text": [
1101
+ "Epoch 51/100, Loss: 0.7366\n",
1102
+ "Epoch 52/100\n"
1103
+ ]
1104
+ },
1105
+ {
1106
+ "name": "stderr",
1107
+ "output_type": "stream",
1108
+ "text": [
1109
+ " \r"
1110
+ ]
1111
+ },
1112
+ {
1113
+ "name": "stdout",
1114
+ "output_type": "stream",
1115
+ "text": [
1116
+ "Epoch 52/100, Loss: 0.7361\n",
1117
+ "Epoch 53/100\n"
1118
+ ]
1119
+ },
1120
+ {
1121
+ "name": "stderr",
1122
+ "output_type": "stream",
1123
+ "text": [
1124
+ " \r"
1125
+ ]
1126
+ },
1127
+ {
1128
+ "name": "stdout",
1129
+ "output_type": "stream",
1130
+ "text": [
1131
+ "Epoch 53/100, Loss: 0.7364\n",
1132
+ "Epoch 54/100\n"
1133
+ ]
1134
+ },
1135
+ {
1136
+ "name": "stderr",
1137
+ "output_type": "stream",
1138
+ "text": [
1139
+ " \r"
1140
+ ]
1141
+ },
1142
+ {
1143
+ "name": "stdout",
1144
+ "output_type": "stream",
1145
+ "text": [
1146
+ "Epoch 54/100, Loss: 0.7363\n",
1147
+ "Epoch 55/100\n"
1148
+ ]
1149
+ },
1150
+ {
1151
+ "name": "stderr",
1152
+ "output_type": "stream",
1153
+ "text": [
1154
+ " \r"
1155
+ ]
1156
+ },
1157
+ {
1158
+ "name": "stdout",
1159
+ "output_type": "stream",
1160
+ "text": [
1161
+ "Epoch 55/100, Loss: 0.7362\n",
1162
+ "Epoch 56/100\n"
1163
+ ]
1164
+ },
1165
+ {
1166
+ "name": "stderr",
1167
+ "output_type": "stream",
1168
+ "text": [
1169
+ " \r"
1170
+ ]
1171
+ },
1172
+ {
1173
+ "name": "stdout",
1174
+ "output_type": "stream",
1175
+ "text": [
1176
+ "Epoch 56/100, Loss: 0.7369\n",
1177
+ "Epoch 57/100\n"
1178
+ ]
1179
+ },
1180
+ {
1181
+ "name": "stderr",
1182
+ "output_type": "stream",
1183
+ "text": [
1184
+ " \r"
1185
+ ]
1186
+ },
1187
+ {
1188
+ "name": "stdout",
1189
+ "output_type": "stream",
1190
+ "text": [
1191
+ "Epoch 57/100, Loss: 0.7366\n",
1192
+ "Epoch 58/100\n"
1193
+ ]
1194
+ },
1195
+ {
1196
+ "name": "stderr",
1197
+ "output_type": "stream",
1198
+ "text": [
1199
+ " \r"
1200
+ ]
1201
+ },
1202
+ {
1203
+ "name": "stdout",
1204
+ "output_type": "stream",
1205
+ "text": [
1206
+ "Epoch 58/100, Loss: 0.7361\n",
1207
+ "Epoch 59/100\n"
1208
+ ]
1209
+ },
1210
+ {
1211
+ "name": "stderr",
1212
+ "output_type": "stream",
1213
+ "text": [
1214
+ " \r"
1215
+ ]
1216
+ },
1217
+ {
1218
+ "name": "stdout",
1219
+ "output_type": "stream",
1220
+ "text": [
1221
+ "Epoch 59/100, Loss: 0.7364\n",
1222
+ "Epoch 60/100\n"
1223
+ ]
1224
+ },
1225
+ {
1226
+ "name": "stderr",
1227
+ "output_type": "stream",
1228
+ "text": [
1229
+ " \r"
1230
+ ]
1231
+ },
1232
+ {
1233
+ "name": "stdout",
1234
+ "output_type": "stream",
1235
+ "text": [
1236
+ "Epoch 60/100, Loss: 0.7368\n",
1237
+ "Epoch 61/100\n"
1238
+ ]
1239
+ },
1240
+ {
1241
+ "name": "stderr",
1242
+ "output_type": "stream",
1243
+ "text": [
1244
+ " \r"
1245
+ ]
1246
+ },
1247
+ {
1248
+ "name": "stdout",
1249
+ "output_type": "stream",
1250
+ "text": [
1251
+ "Epoch 61/100, Loss: 0.7362\n",
1252
+ "Epoch 62/100\n"
1253
+ ]
1254
+ },
1255
+ {
1256
+ "name": "stderr",
1257
+ "output_type": "stream",
1258
+ "text": [
1259
+ " \r"
1260
+ ]
1261
+ },
1262
+ {
1263
+ "name": "stdout",
1264
+ "output_type": "stream",
1265
+ "text": [
1266
+ "Epoch 62/100, Loss: 0.7361\n",
1267
+ "Epoch 63/100\n"
1268
+ ]
1269
+ },
1270
+ {
1271
+ "name": "stderr",
1272
+ "output_type": "stream",
1273
+ "text": [
1274
+ " \r"
1275
+ ]
1276
+ },
1277
+ {
1278
+ "name": "stdout",
1279
+ "output_type": "stream",
1280
+ "text": [
1281
+ "Epoch 63/100, Loss: 0.7375\n",
1282
+ "Epoch 64/100\n"
1283
+ ]
1284
+ },
1285
+ {
1286
+ "name": "stderr",
1287
+ "output_type": "stream",
1288
+ "text": [
1289
+ " \r"
1290
+ ]
1291
+ },
1292
+ {
1293
+ "name": "stdout",
1294
+ "output_type": "stream",
1295
+ "text": [
1296
+ "Epoch 64/100, Loss: 0.7364\n",
1297
+ "Epoch 65/100\n"
1298
+ ]
1299
+ },
1300
+ {
1301
+ "name": "stderr",
1302
+ "output_type": "stream",
1303
+ "text": [
1304
+ " \r"
1305
+ ]
1306
+ },
1307
+ {
1308
+ "name": "stdout",
1309
+ "output_type": "stream",
1310
+ "text": [
1311
+ "Epoch 65/100, Loss: 0.7369\n",
1312
+ "Epoch 66/100\n"
1313
+ ]
1314
+ },
1315
+ {
1316
+ "name": "stderr",
1317
+ "output_type": "stream",
1318
+ "text": [
1319
+ " \r"
1320
+ ]
1321
+ },
1322
+ {
1323
+ "name": "stdout",
1324
+ "output_type": "stream",
1325
+ "text": [
1326
+ "Epoch 66/100, Loss: 0.7360\n",
1327
+ "Epoch 67/100\n"
1328
+ ]
1329
+ },
1330
+ {
1331
+ "name": "stderr",
1332
+ "output_type": "stream",
1333
+ "text": [
1334
+ " \r"
1335
+ ]
1336
+ },
1337
+ {
1338
+ "name": "stdout",
1339
+ "output_type": "stream",
1340
+ "text": [
1341
+ "Epoch 67/100, Loss: 0.7361\n",
1342
+ "Epoch 68/100\n"
1343
+ ]
1344
+ },
1345
+ {
1346
+ "name": "stderr",
1347
+ "output_type": "stream",
1348
+ "text": [
1349
+ " \r"
1350
+ ]
1351
+ },
1352
+ {
1353
+ "name": "stdout",
1354
+ "output_type": "stream",
1355
+ "text": [
1356
+ "Epoch 68/100, Loss: 0.7364\n",
1357
+ "Epoch 69/100\n"
1358
+ ]
1359
+ },
1360
+ {
1361
+ "name": "stderr",
1362
+ "output_type": "stream",
1363
+ "text": [
1364
+ " \r"
1365
+ ]
1366
+ },
1367
+ {
1368
+ "name": "stdout",
1369
+ "output_type": "stream",
1370
+ "text": [
1371
+ "Epoch 69/100, Loss: 0.7363\n",
1372
+ "Epoch 70/100\n"
1373
+ ]
1374
+ },
1375
+ {
1376
+ "name": "stderr",
1377
+ "output_type": "stream",
1378
+ "text": [
1379
+ " \r"
1380
+ ]
1381
+ },
1382
+ {
1383
+ "name": "stdout",
1384
+ "output_type": "stream",
1385
+ "text": [
1386
+ "Epoch 70/100, Loss: 0.7360\n",
1387
+ "Epoch 71/100\n"
1388
+ ]
1389
+ },
1390
+ {
1391
+ "name": "stderr",
1392
+ "output_type": "stream",
1393
+ "text": [
1394
+ " \r"
1395
+ ]
1396
+ },
1397
+ {
1398
+ "name": "stdout",
1399
+ "output_type": "stream",
1400
+ "text": [
1401
+ "Epoch 71/100, Loss: 0.7364\n",
1402
+ "Epoch 72/100\n"
1403
+ ]
1404
+ },
1405
+ {
1406
+ "name": "stderr",
1407
+ "output_type": "stream",
1408
+ "text": [
1409
+ " \r"
1410
+ ]
1411
+ },
1412
+ {
1413
+ "name": "stdout",
1414
+ "output_type": "stream",
1415
+ "text": [
1416
+ "Epoch 72/100, Loss: 0.7366\n",
1417
+ "Epoch 73/100\n"
1418
+ ]
1419
+ },
1420
+ {
1421
+ "name": "stderr",
1422
+ "output_type": "stream",
1423
+ "text": [
1424
+ " \r"
1425
+ ]
1426
+ },
1427
+ {
1428
+ "name": "stdout",
1429
+ "output_type": "stream",
1430
+ "text": [
1431
+ "Epoch 73/100, Loss: 0.7364\n",
1432
+ "Epoch 74/100\n"
1433
+ ]
1434
+ },
1435
+ {
1436
+ "name": "stderr",
1437
+ "output_type": "stream",
1438
+ "text": [
1439
+ " \r"
1440
+ ]
1441
+ },
1442
+ {
1443
+ "name": "stdout",
1444
+ "output_type": "stream",
1445
+ "text": [
1446
+ "Epoch 74/100, Loss: 0.7363\n",
1447
+ "Epoch 75/100\n"
1448
+ ]
1449
+ },
1450
+ {
1451
+ "name": "stderr",
1452
+ "output_type": "stream",
1453
+ "text": [
1454
+ " \r"
1455
+ ]
1456
+ },
1457
+ {
1458
+ "name": "stdout",
1459
+ "output_type": "stream",
1460
+ "text": [
1461
+ "Epoch 75/100, Loss: 0.7360\n",
1462
+ "Epoch 76/100\n"
1463
+ ]
1464
+ },
1465
+ {
1466
+ "name": "stderr",
1467
+ "output_type": "stream",
1468
+ "text": [
1469
+ " \r"
1470
+ ]
1471
+ },
1472
+ {
1473
+ "name": "stdout",
1474
+ "output_type": "stream",
1475
+ "text": [
1476
+ "Epoch 76/100, Loss: 0.7366\n",
1477
+ "Epoch 77/100\n"
1478
+ ]
1479
+ },
1480
+ {
1481
+ "name": "stderr",
1482
+ "output_type": "stream",
1483
+ "text": [
1484
+ " \r"
1485
+ ]
1486
+ },
1487
+ {
1488
+ "name": "stdout",
1489
+ "output_type": "stream",
1490
+ "text": [
1491
+ "Epoch 77/100, Loss: 0.7364\n",
1492
+ "Epoch 78/100\n"
1493
+ ]
1494
+ },
1495
+ {
1496
+ "name": "stderr",
1497
+ "output_type": "stream",
1498
+ "text": [
1499
+ " \r"
1500
+ ]
1501
+ },
1502
+ {
1503
+ "name": "stdout",
1504
+ "output_type": "stream",
1505
+ "text": [
1506
+ "Epoch 78/100, Loss: 0.7365\n",
1507
+ "Epoch 79/100\n"
1508
+ ]
1509
+ },
1510
+ {
1511
+ "name": "stderr",
1512
+ "output_type": "stream",
1513
+ "text": [
1514
+ " \r"
1515
+ ]
1516
+ },
1517
+ {
1518
+ "name": "stdout",
1519
+ "output_type": "stream",
1520
+ "text": [
1521
+ "Epoch 79/100, Loss: 0.7365\n",
1522
+ "Epoch 80/100\n"
1523
+ ]
1524
+ },
1525
+ {
1526
+ "name": "stderr",
1527
+ "output_type": "stream",
1528
+ "text": [
1529
+ " \r"
1530
+ ]
1531
+ },
1532
+ {
1533
+ "name": "stdout",
1534
+ "output_type": "stream",
1535
+ "text": [
1536
+ "Epoch 80/100, Loss: 0.7367\n",
1537
+ "Epoch 81/100\n"
1538
+ ]
1539
+ },
1540
+ {
1541
+ "name": "stderr",
1542
+ "output_type": "stream",
1543
+ "text": [
1544
+ " \r"
1545
+ ]
1546
+ },
1547
+ {
1548
+ "name": "stdout",
1549
+ "output_type": "stream",
1550
+ "text": [
1551
+ "Epoch 81/100, Loss: 0.7368\n",
1552
+ "Epoch 82/100\n"
1553
+ ]
1554
+ },
1555
+ {
1556
+ "name": "stderr",
1557
+ "output_type": "stream",
1558
+ "text": [
1559
+ " \r"
1560
+ ]
1561
+ },
1562
+ {
1563
+ "name": "stdout",
1564
+ "output_type": "stream",
1565
+ "text": [
1566
+ "Epoch 82/100, Loss: 0.7366\n",
1567
+ "Epoch 83/100\n"
1568
+ ]
1569
+ },
1570
+ {
1571
+ "name": "stderr",
1572
+ "output_type": "stream",
1573
+ "text": [
1574
+ " \r"
1575
+ ]
1576
+ },
1577
+ {
1578
+ "name": "stdout",
1579
+ "output_type": "stream",
1580
+ "text": [
1581
+ "Epoch 83/100, Loss: 0.7360\n",
1582
+ "Epoch 84/100\n"
1583
+ ]
1584
+ },
1585
+ {
1586
+ "name": "stderr",
1587
+ "output_type": "stream",
1588
+ "text": [
1589
+ " \r"
1590
+ ]
1591
+ },
1592
+ {
1593
+ "name": "stdout",
1594
+ "output_type": "stream",
1595
+ "text": [
1596
+ "Epoch 84/100, Loss: 0.7358\n",
1597
+ "Epoch 85/100\n"
1598
+ ]
1599
+ },
1600
+ {
1601
+ "name": "stderr",
1602
+ "output_type": "stream",
1603
+ "text": [
1604
+ " \r"
1605
+ ]
1606
+ },
1607
+ {
1608
+ "name": "stdout",
1609
+ "output_type": "stream",
1610
+ "text": [
1611
+ "Epoch 85/100, Loss: 0.7368\n",
1612
+ "Epoch 86/100\n"
1613
+ ]
1614
+ },
1615
+ {
1616
+ "name": "stderr",
1617
+ "output_type": "stream",
1618
+ "text": [
1619
+ " \r"
1620
+ ]
1621
+ },
1622
+ {
1623
+ "name": "stdout",
1624
+ "output_type": "stream",
1625
+ "text": [
1626
+ "Epoch 86/100, Loss: 0.7363\n",
1627
+ "Epoch 87/100\n"
1628
+ ]
1629
+ },
1630
+ {
1631
+ "name": "stderr",
1632
+ "output_type": "stream",
1633
+ "text": [
1634
+ " \r"
1635
+ ]
1636
+ },
1637
+ {
1638
+ "name": "stdout",
1639
+ "output_type": "stream",
1640
+ "text": [
1641
+ "Epoch 87/100, Loss: 0.7359\n",
1642
+ "Epoch 88/100\n"
1643
+ ]
1644
+ },
1645
+ {
1646
+ "name": "stderr",
1647
+ "output_type": "stream",
1648
+ "text": [
1649
+ " \r"
1650
+ ]
1651
+ },
1652
+ {
1653
+ "name": "stdout",
1654
+ "output_type": "stream",
1655
+ "text": [
1656
+ "Epoch 88/100, Loss: 0.7364\n",
1657
+ "Epoch 89/100\n"
1658
+ ]
1659
+ },
1660
+ {
1661
+ "name": "stderr",
1662
+ "output_type": "stream",
1663
+ "text": [
1664
+ " \r"
1665
+ ]
1666
+ },
1667
+ {
1668
+ "name": "stdout",
1669
+ "output_type": "stream",
1670
+ "text": [
1671
+ "Epoch 89/100, Loss: 0.7361\n",
1672
+ "Epoch 90/100\n"
1673
+ ]
1674
+ },
1675
+ {
1676
+ "name": "stderr",
1677
+ "output_type": "stream",
1678
+ "text": [
1679
+ " \r"
1680
+ ]
1681
+ },
1682
+ {
1683
+ "name": "stdout",
1684
+ "output_type": "stream",
1685
+ "text": [
1686
+ "Epoch 90/100, Loss: 0.7365\n",
1687
+ "Epoch 91/100\n"
1688
+ ]
1689
+ },
1690
+ {
1691
+ "name": "stderr",
1692
+ "output_type": "stream",
1693
+ "text": [
1694
+ " \r"
1695
+ ]
1696
+ },
1697
+ {
1698
+ "name": "stdout",
1699
+ "output_type": "stream",
1700
+ "text": [
1701
+ "Epoch 91/100, Loss: 0.7361\n",
1702
+ "Epoch 92/100\n"
1703
+ ]
1704
+ },
1705
+ {
1706
+ "name": "stderr",
1707
+ "output_type": "stream",
1708
+ "text": [
1709
+ " \r"
1710
+ ]
1711
+ },
1712
+ {
1713
+ "name": "stdout",
1714
+ "output_type": "stream",
1715
+ "text": [
1716
+ "Epoch 92/100, Loss: 0.7367\n",
1717
+ "Epoch 93/100\n"
1718
+ ]
1719
+ },
1720
+ {
1721
+ "name": "stderr",
1722
+ "output_type": "stream",
1723
+ "text": [
1724
+ " \r"
1725
+ ]
1726
+ },
1727
+ {
1728
+ "name": "stdout",
1729
+ "output_type": "stream",
1730
+ "text": [
1731
+ "Epoch 93/100, Loss: 0.7362\n",
1732
+ "Epoch 94/100\n"
1733
+ ]
1734
+ },
1735
+ {
1736
+ "name": "stderr",
1737
+ "output_type": "stream",
1738
+ "text": [
1739
+ " \r"
1740
+ ]
1741
+ },
1742
+ {
1743
+ "name": "stdout",
1744
+ "output_type": "stream",
1745
+ "text": [
1746
+ "Epoch 94/100, Loss: 0.7361\n",
1747
+ "Epoch 95/100\n"
1748
+ ]
1749
+ },
1750
+ {
1751
+ "name": "stderr",
1752
+ "output_type": "stream",
1753
+ "text": [
1754
+ " \r"
1755
+ ]
1756
+ },
1757
+ {
1758
+ "name": "stdout",
1759
+ "output_type": "stream",
1760
+ "text": [
1761
+ "Epoch 95/100, Loss: 0.7362\n",
1762
+ "Epoch 96/100\n"
1763
+ ]
1764
+ },
1765
+ {
1766
+ "name": "stderr",
1767
+ "output_type": "stream",
1768
+ "text": [
1769
+ " \r"
1770
+ ]
1771
+ },
1772
+ {
1773
+ "name": "stdout",
1774
+ "output_type": "stream",
1775
+ "text": [
1776
+ "Epoch 96/100, Loss: 0.7363\n",
1777
+ "Epoch 97/100\n"
1778
+ ]
1779
+ },
1780
+ {
1781
+ "name": "stderr",
1782
+ "output_type": "stream",
1783
+ "text": [
1784
+ " \r"
1785
+ ]
1786
+ },
1787
+ {
1788
+ "name": "stdout",
1789
+ "output_type": "stream",
1790
+ "text": [
1791
+ "Epoch 97/100, Loss: 0.7363\n",
1792
+ "Epoch 98/100\n"
1793
+ ]
1794
+ },
1795
+ {
1796
+ "name": "stderr",
1797
+ "output_type": "stream",
1798
+ "text": [
1799
+ " \r"
1800
+ ]
1801
+ },
1802
+ {
1803
+ "name": "stdout",
1804
+ "output_type": "stream",
1805
+ "text": [
1806
+ "Epoch 98/100, Loss: 0.7363\n",
1807
+ "Epoch 99/100\n"
1808
+ ]
1809
+ },
1810
+ {
1811
+ "name": "stderr",
1812
+ "output_type": "stream",
1813
+ "text": [
1814
+ " \r"
1815
+ ]
1816
+ },
1817
+ {
1818
+ "name": "stdout",
1819
+ "output_type": "stream",
1820
+ "text": [
1821
+ "Epoch 99/100, Loss: 0.7364\n",
1822
+ "Epoch 100/100\n"
1823
+ ]
1824
+ },
1825
+ {
1826
+ "name": "stderr",
1827
+ "output_type": "stream",
1828
+ "text": [
1829
+ " "
1830
+ ]
1831
+ },
1832
+ {
1833
+ "name": "stdout",
1834
+ "output_type": "stream",
1835
+ "text": [
1836
+ "Epoch 100/100, Loss: 0.7364\n"
1837
+ ]
1838
+ },
1839
+ {
1840
+ "name": "stderr",
1841
+ "output_type": "stream",
1842
+ "text": [
1843
+ "\r"
1844
+ ]
1845
+ }
1846
+ ],
1847
+ "source": [
1848
+ "VAE_train(vae, optimizer, loader, epochs, dim_input, save_path=None)"
1849
+ ]
1850
+ },
1851
+ {
1852
+ "cell_type": "code",
1853
+ "execution_count": 305,
1854
+ "id": "3b7f5142-0db4-4ff9-8379-2a1d3db79537",
1855
+ "metadata": {
1856
+ "tags": []
1857
+ },
1858
+ "outputs": [],
1859
+ "source": [
1860
+ "f_test, ferr_test, specz_test = photoz_archive.get_testing_data()"
1861
+ ]
1862
+ },
1863
+ {
1864
+ "cell_type": "code",
1865
+ "execution_count": 306,
1866
+ "id": "0ea2e51f-1879-485e-a0c5-36b564ce5bc2",
1867
+ "metadata": {
1868
+ "tags": []
1869
+ },
1870
+ "outputs": [],
1871
+ "source": [
1872
+ "Ntest=10"
1873
+ ]
1874
+ },
1875
+ {
1876
+ "cell_type": "code",
1877
+ "execution_count": 307,
1878
+ "id": "f2a2896d-cfa1-4978-a403-5a1ac62ddbfc",
1879
+ "metadata": {
1880
+ "tags": []
1881
+ },
1882
+ "outputs": [],
1883
+ "source": [
1884
+ "datain = torch.Tensor(f_test[:10]).to(device)\n",
1885
+ "x = vae.encoder(datain)\n",
1886
+ "mu = vae.fc_mu(x)\n",
1887
+ "log_var = vae.fc_logvar(x)\n",
1888
+ "Nsamp=1000"
1889
+ ]
1890
+ },
1891
+ {
1892
+ "cell_type": "code",
1893
+ "execution_count": 308,
1894
+ "id": "9fa354f3-6d7f-441e-8c09-a815f2e212d5",
1895
+ "metadata": {
1896
+ "tags": []
1897
+ },
1898
+ "outputs": [
1899
+ {
1900
+ "data": {
1901
+ "text/plain": [
1902
+ "tensor([[1.1479, 0.3912, 0.8374, 0.7508, 1.2488, 0.8488],\n",
1903
+ " [0.3916, 0.8170, 0.9124, 0.8022, 0.9451, 0.9885],\n",
1904
+ " [0.3894, 0.5246, 0.9165, 0.8517, 0.8625, 0.8356],\n",
1905
+ " [0.4891, 0.5986, 0.9832, 0.7717, 0.9078, 0.8872],\n",
1906
+ " [0.1693, 0.4140, 0.6905, 0.7985, 0.7315, 0.5996],\n",
1907
+ " [0.1097, 0.3383, 0.4823, 0.7898, 0.7083, 0.6996],\n",
1908
+ " [0.5493, 0.6261, 1.0609, 0.7438, 0.8732, 0.9139],\n",
1909
+ " [0.5659, 0.6637, 0.8864, 0.9856, 0.8920, 0.7977],\n",
1910
+ " [0.3160, 0.3441, 0.4192, 0.6507, 0.6579, 0.5727],\n",
1911
+ " [0.7710, 0.5087, 0.7844, 0.9328, 0.7800, 0.8684]], device='cuda:0')"
1912
+ ]
1913
+ },
1914
+ "execution_count": 308,
1915
+ "metadata": {},
1916
+ "output_type": "execute_result"
1917
+ }
1918
+ ],
1919
+ "source": [
1920
+ "datain"
1921
+ ]
1922
+ },
1923
+ {
1924
+ "cell_type": "code",
1925
+ "execution_count": 309,
1926
+ "id": "77ba620c-4146-4d55-94f2-645d2b7e19be",
1927
+ "metadata": {
1928
+ "tags": []
1929
+ },
1930
+ "outputs": [
1931
+ {
1932
+ "data": {
1933
+ "text/plain": [
1934
+ "tensor([[-3.4548e-06],\n",
1935
+ " [-3.4548e-06],\n",
1936
+ " [-3.4548e-06],\n",
1937
+ " [-3.4548e-06],\n",
1938
+ " [-3.4548e-06],\n",
1939
+ " [-3.4548e-06],\n",
1940
+ " [-3.4548e-06],\n",
1941
+ " [-3.4548e-06],\n",
1942
+ " [-3.4548e-06],\n",
1943
+ " [-3.4548e-06]], device='cuda:0', grad_fn=<AddmmBackward0>)"
1944
+ ]
1945
+ },
1946
+ "execution_count": 309,
1947
+ "metadata": {},
1948
+ "output_type": "execute_result"
1949
+ }
1950
+ ],
1951
+ "source": [
1952
+ "mu"
1953
+ ]
1954
+ },
1955
+ {
1956
+ "cell_type": "code",
1957
+ "execution_count": 310,
1958
+ "id": "20871270-a53d-47e2-b3d8-606b486126b5",
1959
+ "metadata": {
1960
+ "tags": []
1961
+ },
1962
+ "outputs": [
1963
+ {
1964
+ "data": {
1965
+ "text/plain": [
1966
+ "tensor([[2.0000],\n",
1967
+ " [2.0000],\n",
1968
+ " [2.0000],\n",
1969
+ " [2.0000],\n",
1970
+ " [2.0000],\n",
1971
+ " [2.0000],\n",
1972
+ " [2.0000],\n",
1973
+ " [2.0000],\n",
1974
+ " [2.0000],\n",
1975
+ " [2.0000]], device='cuda:0', grad_fn=<ExpBackward0>)"
1976
+ ]
1977
+ },
1978
+ "execution_count": 310,
1979
+ "metadata": {},
1980
+ "output_type": "execute_result"
1981
+ }
1982
+ ],
1983
+ "source": [
1984
+ "torch.exp(log_var)"
1985
+ ]
1986
+ },
1987
+ {
1988
+ "cell_type": "code",
1989
+ "execution_count": 311,
1990
+ "id": "47cd277a-e23a-401a-965a-dd7d93f7c196",
1991
+ "metadata": {
1992
+ "tags": []
1993
+ },
1994
+ "outputs": [],
1995
+ "source": [
1996
+ "import torch.distributions as D\n"
1997
+ ]
1998
+ },
1999
+ {
2000
+ "cell_type": "code",
2001
+ "execution_count": 312,
2002
+ "id": "d599b51a-f42a-4fc3-9acd-0902a985d4b1",
2003
+ "metadata": {
2004
+ "tags": []
2005
+ },
2006
+ "outputs": [
2007
+ {
2008
+ "data": {
2009
+ "text/plain": [
2010
+ "tensor([2.0000], grad_fn=<ExpBackward0>)"
2011
+ ]
2012
+ },
2013
+ "execution_count": 312,
2014
+ "metadata": {},
2015
+ "output_type": "execute_result"
2016
+ }
2017
+ ],
2018
+ "source": [
2019
+ "torch.exp(log_var[ii].cpu())"
2020
+ ]
2021
+ },
2022
+ {
2023
+ "cell_type": "code",
2024
+ "execution_count": 313,
2025
+ "id": "e1ee1209-7f4b-40e1-b7b5-a83c3fe8ef75",
2026
+ "metadata": {
2027
+ "tags": []
2028
+ },
2029
+ "outputs": [],
2030
+ "source": [
2031
+ "vae = vae.eval()\n",
2032
+ "z_dim=1\n",
2033
+ "py_z = np.zeros(shape=(Ntest,Nsamp))\n",
2034
+ "px_z = np.zeros(shape=(Ntest,Nsamp,6))\n",
2035
+ "pz= np.zeros(shape=(Ntest,Nsamp))\n",
2036
+ "\n",
2037
+ "for ii in range(Ntest):\n",
2038
+ " base_distribution = D.Normal(mu[ii].cpu()*torch.ones(z_dim), torch.exp(log_var[ii].cpu())*torch.ones(z_dim))\n",
2039
+ " for jj in range(Nsamp):\n",
2040
+ " z = vae.sampling(mu[ii],log_var[ii]) \n",
2041
+ "\n",
2042
+ " py_z[ii,jj] = vae.regressor(z.to(device)).detach().cpu().numpy()\n",
2043
+ " px_z[ii,jj,:] = vae.decode(z.to(device)).detach().cpu().numpy()\n",
2044
+ " pz[ii,jj] = base_distribution.log_prob(z.cpu())\n"
2045
+ ]
2046
+ },
2047
+ {
2048
+ "cell_type": "code",
2049
+ "execution_count": 314,
2050
+ "id": "258a6609-9a07-4313-8d7e-581bf623ce71",
2051
+ "metadata": {
2052
+ "tags": []
2053
+ },
2054
+ "outputs": [
2055
+ {
2056
+ "data": {
2057
+ "text/plain": [
2058
+ "array([[0.12801583, 0.17218088, 0.1873554 , ..., 0.14763936, 0.15918671,\n",
2059
+ " 0.10822631],\n",
2060
+ " [0.17516595, 0.19795613, 0.10892031, ..., 0.09822501, 0.19940973,\n",
2061
+ " 0.15055025],\n",
2062
+ " [0.16263473, 0.17919608, 0.14378181, ..., 0.19080766, 0.19529714,\n",
2063
+ " 0.18262688],\n",
2064
+ " ...,\n",
2065
+ " [0.0383369 , 0.1969846 , 0.19438929, ..., 0.15335193, 0.19859305,\n",
2066
+ " 0.19859523],\n",
2067
+ " [0.18836775, 0.19947221, 0.15643367, ..., 0.19192475, 0.19785437,\n",
2068
+ " 0.19929699],\n",
2069
+ " [0.19779257, 0.14646251, 0.19313204, ..., 0.19487876, 0.19082342,\n",
2070
+ " 0.18486699]])"
2071
+ ]
2072
+ },
2073
+ "execution_count": 314,
2074
+ "metadata": {},
2075
+ "output_type": "execute_result"
2076
+ }
2077
+ ],
2078
+ "source": [
2079
+ "np.exp(pz)"
2080
+ ]
2081
+ },
2082
+ {
2083
+ "cell_type": "code",
2084
+ "execution_count": 316,
2085
+ "id": "a1e92836-3465-44a1-b554-0de380e5ba16",
2086
+ "metadata": {
2087
+ "tags": []
2088
+ },
2089
+ "outputs": [
2090
+ {
2091
+ "data": {
2092
+ "text/plain": [
2093
+ "(array([ 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
2094
+ " 0., 0., 0., 0., 0., 0., 0., 1000., 0.,\n",
2095
+ " 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
2096
+ " 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
2097
+ " 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
2098
+ " 0., 0., 0., 0., 0.]),\n",
2099
+ " array([0. , 0.04, 0.08, 0.12, 0.16, 0.2 , 0.24, 0.28, 0.32, 0.36, 0.4 ,\n",
2100
+ " 0.44, 0.48, 0.52, 0.56, 0.6 , 0.64, 0.68, 0.72, 0.76, 0.8 , 0.84,\n",
2101
+ " 0.88, 0.92, 0.96, 1. , 1.04, 1.08, 1.12, 1.16, 1.2 , 1.24, 1.28,\n",
2102
+ " 1.32, 1.36, 1.4 , 1.44, 1.48, 1.52, 1.56, 1.6 , 1.64, 1.68, 1.72,\n",
2103
+ " 1.76, 1.8 , 1.84, 1.88, 1.92, 1.96, 2. ]),\n",
2104
+ " <BarContainer object of 50 artists>)"
2105
+ ]
2106
+ },
2107
+ "execution_count": 316,
2108
+ "metadata": {},
2109
+ "output_type": "execute_result"
2110
+ },
2111
+ {
2112
+ "data": {
2113
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGcCAYAAAAcfDBFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbdUlEQVR4nO3dcWzU53348c9BHKOs+KKkaYIplbEq6NJt2rrBxhoq26rUqekYWqUOKY2rLlNCpU6qUNaWrV3GRkuVP1Yo6yaRf1K1/zRRi8iUNkSqnAHaSaVKW4gGbDRnRkhKlsHuQgIG+76/P/LzKQ62MfSIP2e/XtKpunu+Ns+jr5/43e/d+UpFURQBAJDMgtmeAADAZEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAIKUbZnsCv4pGoxEvvvhiLF68OEql0mxPBwCYgaIo4tVXX43u7u5YsGDq6yVtHSkvvvhiLFu2bLanAQBcg5MnT8a73/3uKcfbOlIWL14cEW8ssqura5ZnAwDMRL1ej2XLljV/j0+lrSNl/Cmerq4ukQIAbeZKL9XwwlkAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApHTNkXL+/Pmo1WqtnAsAQNNVR0qj0YhHH300VqxYET/96U+bj1er1di4cWPs2rUrBgcH48SJE7/yGAAwf131Bwy+8sor0d/fHy+88ELzsUajEevWrYsdO3bEwMBALF++PDZs2BCVSuWaxwCA+a1UFEVxTV9YKsXQ0FD09fXFD3/4w/jTP/3TqNfr0dHREWNjY9HV1RXPPPNMvPLKK9c0tmrVqivOoV6vR7lcjlqt5lOQAaBNzPT391VfSZlMpVKJ3t7e6OjoiIiIhQsXRm9vbwwNDcW5c+euaWyySBkZGYmRkZEJiwQA5qaWRMrp06cvK6FyuRynTp2KCxcuXNPYZLZt2xZbtmxpxZThuuv54pNXPGb4a3e/DTMBaE8teQtyR0dH82rIuEajEY1G45rHJrN58+ao1WrN28mTJ1sxfQAgoZZEypIlSy576qVWq8XSpUuveWwynZ2d0dXVNeEGAMxNLYmUvr6+qFarMf4a3EuXLsXw8HD09/df8xgAML9dU6S89emYNWvWRHd3d+zfvz8iIvbt2xc9PT2xevXqax4DAOa3q37h7P/8z//EI488EhER3/nOd+KOO+6I973vfbFnz57YunVrHD58OCqVSuzevTtKpVKUSqVrGgMA5rdr/jspGfg7KWTm3T0Ak5vp728fMAgApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJBSSyNl37598bd/+7fxjW98I+699944evRoRERUq9XYuHFj7Nq1KwYHB+PEiRPNr5luDACYv25o1TcaGxuLT3/603Hs2LG44YYb4t/+7d/is5/9bDz99NOxbt262LFjRwwMDMTy5ctjw4YNUalUotFoTDkGAMxvLbuScubMmXjxxRfj9ddfj4iIcrkcZ8+ejb1798bx48dj7dq1ERExMDAQhw4dioMHD047BgDMby2LlNtuuy1+93d/Nz75yU/G//3f/8U3vvGN2LJlS1Qqlejt7Y2Ojo6IiFi4cGH09vbG0NDQtGOTGRkZiXq9PuEGAMxNLX1NyuOPPx7Hjx+PJUuWxEc+8pH42Mc+FqdPn46urq4Jx5XL5Th16tS0Y5PZtm1blMvl5m3ZsmWtnD4AkEjLXpMSEXH69On46Ec/GidOnIhPfepTcfPNN0dHR0fzSsm4RqMRjUZj2rHJbN68OTZt2tS8X6/XhQoAzFEti5TXX389PvnJT8ZPfvKTWLRoUXzpS1+K++67Lz7zmc/EgQMHJhxbq9Vi6dKlMTY2NuXYZDo7O6Ozs7NVUwYAEmvZ0z3PPfdcLF68OBYtWhQREX/3d38Xr776atx1111RrVajKIqIiLh06VIMDw9Hf39/9PX1TTkGAMxvLYuU9773vXHq1Kl47bXXIiLi4sWLcccdd8Rdd90V3d3dsX///oh442+p9PT0xOrVq2PNmjVTjgEA81vLnu655ZZb4pFHHom//Mu/jN/8zd+MF154Ib797W/HwoULY8+ePbF169Y4fPhwVCqV2L17d5RKpSiVSlOOAQDzW6kYf66lDdXr9SiXy1Gr1S57lxDMtp4vPnnFY4a/dvfbMBOAXGb6+9tn9wAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKR0w/X4pkeOHIndu3fHsmXLYv369bF48eLr8c8AAHNYy6+kfPOb34z7778/PvWpT8W9994bixcvjmq1Ghs3boxdu3bF4OBgnDhxonn8dGMAwPzV0isp3//+9+Pv//7v47nnnovbbrstIiIajUasW7cuduzYEQMDA7F8+fLYsGFDVCqVaccAgPmtZVdSRkdH43Of+1w8+OCDzUCJiNi7d28cP3481q5dGxERAwMDcejQoTh48OC0YwDA/NayKyn79u2LkydPxrFjx2L9+vVx7NixeOihh+I//uM/ore3Nzo6OiIiYuHChdHb2xtDQ0Nx7ty5KcdWrVp12b8xMjISIyMjzfv1er1V0wcAkmlZpBw6dChuvvnmePjhh+OWW26Jp556KtatWxf9/f3R1dU14dhyuRynTp2KCxcuTDk2mW3btsWWLVtaNWUAILGWPd1z/vz5+PVf//W45ZZbIiLij/7oj+L222+PAwcONK+UjGs0GtFoNKKjo2PKscls3rw5arVa83by5MlWTR8ASKZlkXLHHXfEa6+9NuGxd7/73fH5z3/+sqdlarVaLF26NJYsWTLl2GQ6Ozujq6trwg0AmJtaFikf/OAHY3h4OEZHR5uPXbhwISLeeJtxURQREXHp0qUYHh6O/v7+6Ovrm3IMAJjfWhYpK1asiN/+7d+Op59+OiIizpw5E6+88kr81V/9VXR3d8f+/fsj4o0X2Pb09MTq1atjzZo1U44BAPNbS/9Oyre//e148MEH49ChQ1GtVuPxxx+Pm266Kfbs2RNbt26Nw4cPR6VSid27d0epVIpSqTTlGAAwv5WK8eda2lC9Xo9yuRy1Ws3rU0in54tPXvGY4a/d/TbMBCCXmf7+9gGDAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKbU8Ul5//fW48847Y3h4OCIiqtVqbNy4MXbt2hWDg4Nx4sSJ5rHTjQEA89sNrf6GO3fujCNHjkRERKPRiHXr1sWOHTtiYGAgli9fHhs2bIhKpTLtGABAS6+k7NmzJ/r7+5v39+7dG8ePH4+1a9dGRMTAwEAcOnQoDh48OO0YAEDLrqT893//d7z00kvxJ3/yJ83HKpVK9Pb2RkdHR0RELFy4MHp7e2NoaCjOnTs35diqVasm/TdGRkZiZGSkeb9er7dq+gBAMi25kjI2NhaPPPJI3H///RMeP336dHR1dU14rFwux6lTp6Ydm8q2bduiXC43b8uWLWvF9AGAhFoSKd/85jfjgQceiAULJn67jo6O5pWScY1GIxqNxrRjU9m8eXPUarXm7eTJk62YPgCQUEue7tm5c2d8/vOfn/DYypUro9FoxPvf//4Jj9dqtVi6dGmMjY3FgQMHJh2bSmdnZ3R2drZiygBAci25kvJf//VfceHCheYtIuLYsWPxzDPPRLVajaIoIiLi0qVLMTw8HP39/dHX1zflGADAdf1jbmvWrInu7u7Yv39/RETs27cvenp6YvXq1dOOAQC0/O+kvNmCBQtiz549sXXr1jh8+HBUKpXYvXt3lEqlKJVKU44BAJSK8edb2lC9Xo9yuRy1Wu2ydwrBbOv54pNXPGb4a3e/DTMByGWmv799dg8AkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKLYuUJ554IlauXBldXV3x8Y9/PM6cORMREdVqNTZu3Bi7du2KwcHBOHHiRPNrphsDAOa3lkTK888/H08++WR8//vfj0cffTSeeeaZ+MIXvhCNRiPWrVsXn/jEJ+L++++Pe++9NzZs2BARMe0YAMANrfgmBw4ciJ07d8aNN94Y73//++PQoUPx+OOPx969e+P48eOxdu3aiIgYGBiI9evXx8GDB+OVV16ZcmzVqlWtmBYA0MZaciVlcHAwbrzxxub922+/Pd7znvdEpVKJ3t7e6OjoiIiIhQsXRm9vbwwNDU07BgBwXV44++yzz8YDDzwQp0+fjq6urglj5XI5Tp06Ne3YVEZGRqJer0+4AQBzU8sj5aWXXorR0dFYv359dHR0NK+UjGs0GtFoNKYdm8q2bduiXC43b8uWLWv19AGAJFoaKWNjY7F9+/bYuXNnREQsWbLksqsdtVotli5dOu3YVDZv3hy1Wq15O3nyZCunDwAk0tJI+frXvx6bNm2Kd7zjHRERcdddd0W1Wo2iKCIi4tKlSzE8PBz9/f3R19c35dhUOjs7o6ura8INAJibWvLunoiI7du3x4oVK+Ls2bNx9uzZeP7552N0dDS6u7tj//798aEPfSj27dsXPT09sXr16iiKYsoxAICWRMpjjz0WmzZtal4ViYi46aab4pe//GXs2bMntm7dGocPH45KpRK7d++OUqkUpVJpyjEAgFLx5rJoM/V6PcrlctRqNU/9kE7PF5+84jHDX7v7bZgJQC4z/f3ts3sAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEqzHinVajU2btwYu3btisHBwThx4sRsTwkASOCG2fzHG41GrFu3Lnbs2BEDAwOxfPny2LBhQ1QqldmcFgCQwKxeSdm7d28cP3481q5dGxERAwMDcejQoTh48OBsTgsASGBWr6RUKpXo7e2Njo6OiIhYuHBh9Pb2xtDQUKxateqy40dGRmJkZKR5v1arRUREvV5/eyYMV6Ex8voVj/GzC8xH4//tK4pi2uNmNVJOnz4dXV1dEx4rl8tx6tSpSY/ftm1bbNmy5bLHly1bdl3mB9dbeftszwBg9rz66qtRLpenHJ/VSOno6GheRRnXaDSi0WhMevzmzZtj06ZNE449c+ZM3HrrrVEqlVo2r3q9HsuWLYuTJ09eFlFzxVxfo/W1v7m+Rutrf3N9jddzfUVRxKuvvhrd3d3THjerkbJkyZI4cODAhMdqtVosXbp00uM7Ozujs7NzwmM333zz9ZpedHV1zckfvDeb62u0vvY319dofe1vrq/xeq1vuiso42b1hbN9fX1RrVabz0ldunQphoeHo7+/fzanBQAkMKuRsmbNmuju7o79+/dHRMS+ffuip6cnVq9ePZvTAgASmNWnexYsWBB79uyJrVu3xuHDh6NSqcTu3btb+vqSa9HZ2RkPPfTQZU8tzSVzfY3W1/7m+hqtr/3N9TVmWF+puNL7fwAAZsGs/1l8AIDJiBQAICWRAgCkJFKYVlEU8eKLL872NH4lc2EN1yrz2s+fP9/8aIu5qFXrmyvnMPM6pjIfzmF28ypSqtVqbNy4MXbt2hWDg4Nx4sSJSY/bvn17fPWrX42/+Zu/iX/8x3+c8VgGM1ljvV6Pe+65J26++ebo7e2N7373uxPGv/Od70SpVIpSqRQLFiyI48ePv13Tv6KZnsPp1pD5HM5kfZ/73Oeaaxu/feITn2iOZz5/EW/8pehHH300VqxYET/96U+nPK5d9+FM1tfOezBi5uewXffhTNbXzvvwiSeeiJUrV0ZXV1d8/OMfjzNnzkx6XIo9WMwTY2NjxW/8xm8UP/rRj4qiKIqnn366+IM/+IPLjnvssceKtWvXNu//4R/+YfHDH/7wimMZzHSNX/jCF4p//dd/LX7+858X99xzT9HR0VE8//zzzfH77ruvOHjwYHHw4MHi8OHDb9v8r2Sm6yuKqdeQ+RzOZH0XL14sPvvZzxZHjx4tqtVqUa1WiwcffLB49NFHm8dkPX/jTp8+XQwPDxcRUQwNDU16TDvvw5msr1334LiZrLEo2nMfFsWV19fO+/AXv/hFcf/99xfPPfdc8b3vfa+45ZZbir/4i7+47Lgse3DeRMoPfvCDYtGiRcXFixeLoiiK0dHR4qabbip+/OMfTzhu9erVxT/8wz8073/1q18tPvrRj15xLIOZrPHixYvFt771reb98+fPF52dncVjjz1WFEVR/Pu//3vx4Q9/uHj66aeLS5cuvb0LuIKZnsPp1pD5HM5kfefOnSvq9fqEr1u7dm3x8ssvF0WR+/y91XS/4Np5H46b7hdcu+7Bt5ruHLbrPnyzqdbXzvvwW9/6VjEyMtK8/9BDDxV33nnnZcdl2YPz5umeSqUSvb29zQ80XLhwYfT29sbQ0FDzmIsXL8azzz4bK1eubD62YsWKGBoamnYsi5mssaOjIwYHB5v3Fy1aFOVyOd7znvdERMTPfvazePnll+MjH/lIvPe9741nn3327V3ENGayvoip15D9HM5kfb/2a78Wixcvbt5/+eWXIyLitttui4jc52+m2n0fXkk778Gr0a77cCbaeR8ODg7GjTfe2Lx/++23N3/2xmXag/MmUk6fPn3ZBySVy+U4depU8/7//u//xujo6ITjyuVynD9/ftqxs2fPXv8FzMBM1vhWL7zwQixdujR+//d/PyIiPvOZz8TPf/7zOHLkSNxxxx3xsY99LM6fP39d5z1TM13fVGvIfg6v5fw98cQTcffddzfvZz5/M9Xu+/BqtdMevBrtug+vRTvvw2effTYeeOCBCY9l2oPzJlI6Ojqa/w91XKPRiEajMeGYN//v+DERb/wJ/6nG3vw9ZtNM1vhW//Iv/xK7du267PGVK1fGE088ERcuXIhnnnmm1VO9Jle7vreuYbrzm+EcXsv527NnT/zxH//xZY9nPH8z1e778Gq10x68Fu22D69Fu+7Dl156KUZHR2P9+vUTHs+0B+dNpCxZsiTq9fqEx2q1WixdurR5/9Zbb40bb7xxwnG1Wi0WLVoU73rXu6Ycu/XWW6//AmZgJmt8s6Ghofit3/qt+L3f+71Jx9/1rnfFmjVr0rxN9GrXFzFxDdOd3wzn8GrX99prr0W1Wo0777xz0vFs52+m2n0fXo1224PXqp324dVq1304NjYW27dvj507d142lmkPzptI6evri2q1GsX//6iiS5cuxfDwcPT39zePKZVK8aEPfSh+8YtfNB/7z//8z+jr65t2LIuZrHHc0aNH4/nnn48/+7M/i4iI0dHR5te92djY2ITnHmfT1azvzcbXkP0cXu369u7dGx/+8Ien/Z6Zzt9Mtfs+nKl23IO/inbZh1erXffh17/+9di0aVO84x3viIg3XocyLtMenDeRsmbNmuju7o79+/dHRMS+ffuip6cnVq9eHVu2bInDhw9HRMSnP/3pePLJJ5tf99RTT8Wf//mfX3Esg5mu8Ze//GX88z//c3zwgx+Mo0ePxqFDh2Lbtm0xOjoaDz/8cFSr1YiIOHLkSHR2dsbv/M7vzNqa3mwm67vSGjKfw5mev3FvvcSc/fy92WSXhefKPoy48vradQ++2XRrbOd9OO5K53BcO+7D7du3x4oVK+Ls2bNx9OjR+MEPfhBPPfVUzj14Xd4zlNSxY8eKe++9t/inf/qn4p577imOHTtWFEVRfOADHyi+973vNY/7yle+Unz5y18u/vqv/7rYunXrhO8x3VgGV1rj+fPniw984ANFREy4ffnLXy4uXLhQ3HXXXcU73/nO4ktf+lLx8MMPF+fOnZvlFU10pfXNZA2Zz+FMf0ZHR0eL3t7e5tuVi6Joi/NXFEXx8ssvF1/5yleKiCjuu+++4siRI0VRzJ19eKX1tfseLIorr7Hd9+FMf0bbcR9+97vfLUql0oSfvZtuuqmo1+sp92CpKCa5vggAMMvmzdM9AEB7ESkAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASOn/AVJpQpAE3MvRAAAAAElFTkSuQmCC\n",
2114
+ "text/plain": [
2115
+ "<Figure size 640x480 with 1 Axes>"
2116
+ ]
2117
+ },
2118
+ "metadata": {},
2119
+ "output_type": "display_data"
2120
+ }
2121
+ ],
2122
+ "source": [
2123
+ "plt.hist(py_z[m], bins =50, range =(0,2))"
2124
+ ]
2125
+ },
2126
+ {
2127
+ "cell_type": "code",
2128
+ "execution_count": 318,
2129
+ "id": "d14b8ae2-6bf7-47da-9725-57cc3f2b6cca",
2130
+ "metadata": {},
2131
+ "outputs": [
2132
+ {
2133
+ "data": {
2134
+ "text/plain": [
2135
+ "1.103"
2136
+ ]
2137
+ },
2138
+ "execution_count": 318,
2139
+ "metadata": {},
2140
+ "output_type": "execute_result"
2141
+ }
2142
+ ],
2143
+ "source": [
2144
+ "specz_test[m]"
2145
+ ]
2146
+ },
2147
+ {
2148
+ "cell_type": "code",
2149
+ "execution_count": null,
2150
+ "id": "c2962376-46bc-4153-bfe5-219e10369709",
2151
+ "metadata": {},
2152
+ "outputs": [],
2153
+ "source": []
2154
+ }
2155
+ ],
2156
+ "metadata": {
2157
+ "kernelspec": {
2158
+ "display_name": "DLenv2",
2159
+ "language": "python",
2160
+ "name": "dlenv2"
2161
+ },
2162
+ "language_info": {
2163
+ "codemirror_mode": {
2164
+ "name": "ipython",
2165
+ "version": 3
2166
+ },
2167
+ "file_extension": ".py",
2168
+ "mimetype": "text/x-python",
2169
+ "name": "python",
2170
+ "nbconvert_exporter": "python",
2171
+ "pygments_lexer": "ipython3",
2172
+ "version": "3.9.7"
2173
+ }
2174
+ },
2175
+ "nbformat": 4,
2176
+ "nbformat_minor": 5
2177
+ }
notebooks/CVAE.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/HandsON_outreach-Copy1.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Insight_notebook.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_Freia.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_TEST-Copy1.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_TEST-Copy2.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_TEST-Copy3.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_TEST.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_Xiao+19-Copy1.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_Xiao+19-Copy2.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Normalizing_flows_Xiao+19.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/PLOTS.ipynb ADDED
@@ -0,0 +1,579 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "873187db-8223-4aa9-88ef-9ee3cc8fbfa4",
7
+ "metadata": {
8
+ "tags": []
9
+ },
10
+ "outputs": [],
11
+ "source": [
12
+ "import numpy as np\n",
13
+ "import pandas as pd\n",
14
+ "from astropy.io import fits\n",
15
+ "import os\n",
16
+ "from astropy.table import Table\n",
17
+ "from scipy.spatial import KDTree\n",
18
+ "\n",
19
+ "import matplotlib.pyplot as plt\n",
20
+ "\n",
21
+ "from IPython.display import Image\n",
22
+ "from IPython.core.display import HTML "
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 2,
28
+ "id": "0cd7baac-bec6-4619-bf86-b03baf28ea8c",
29
+ "metadata": {},
30
+ "outputs": [
31
+ {
32
+ "name": "stderr",
33
+ "output_type": "stream",
34
+ "text": [
35
+ "/data/astro/scratch/lcabayol/anaconda3/envs/DESIenv6/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
36
+ " from .autonotebook import tqdm as notebook_tqdm\n"
37
+ ]
38
+ }
39
+ ],
40
+ "source": [
41
+ "import torch\n",
42
+ "from torch.utils.data import DataLoader, dataset, TensorDataset\n",
43
+ "from torch import nn, optim\n",
44
+ "from torch.optim import lr_scheduler"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": 3,
50
+ "id": "8a694b63-85ec-49b9-9836-c5b579d94281",
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "import sys\n",
55
+ "sys.path.append('../insight')\n",
56
+ "from archive import archive \n",
57
+ "from insight_arch import Photoz_network\n",
58
+ "from insight import Insight_module\n",
59
+ "from utils import sigma68, nmad, plot_photoz\n",
60
+ "from scipy import stats"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": 4,
66
+ "id": "6f50d39b-eac8-4f49-a4b7-7579c9984a61",
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "from matplotlib import rcParams\n",
71
+ "rcParams[\"mathtext.fontset\"] = \"stix\"\n",
72
+ "rcParams[\"font.family\"] = \"STIXGeneral\"\n",
73
+ "parent_dir = '/data/astro/scratch/lcabayol/Euclid/NNphotozs/Euclid_EXT_MER_PHZ_DC2_v1.5'"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": 6,
79
+ "id": "661b9a50-684f-4e7d-9293-a73ec5edb98f",
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "photoz_archive = archive(path = parent_dir, Qz_cut=1)\n",
84
+ "f, ferr, specz, specqz = photoz_archive.get_training_data()"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": 100,
90
+ "id": "eff8e565-4e6e-41a0-ad54-4035bea6b14b",
91
+ "metadata": {},
92
+ "outputs": [],
93
+ "source": [
94
+ "f_test, ferr_test, specz_test = photoz_archive.get_testing_data()"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "id": "667e4edc-1a58-438d-b1ef-e01ad199e79f",
101
+ "metadata": {},
102
+ "outputs": [],
103
+ "source": []
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": 74,
108
+ "id": "ace74805-afb6-4d05-826a-901c0e115b8d",
109
+ "metadata": {
110
+ "tags": []
111
+ },
112
+ "outputs": [],
113
+ "source": [
114
+ "df_test = pd.read_csv('/data/astro/scratch/lcabayol/Euclid/NNphotozs/results/df1.csv', sep=',', header = 0, comment='#')"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 76,
120
+ "id": "854d72a7-e748-4e79-8f18-0c80b2a58ed8",
121
+ "metadata": {
122
+ "tags": []
123
+ },
124
+ "outputs": [
125
+ {
126
+ "data": {
127
+ "text/html": [
128
+ "<div>\n",
129
+ "<style scoped>\n",
130
+ " .dataframe tbody tr th:only-of-type {\n",
131
+ " vertical-align: middle;\n",
132
+ " }\n",
133
+ "\n",
134
+ " .dataframe tbody tr th {\n",
135
+ " vertical-align: top;\n",
136
+ " }\n",
137
+ "\n",
138
+ " .dataframe thead th {\n",
139
+ " text-align: right;\n",
140
+ " }\n",
141
+ "</style>\n",
142
+ "<table border=\"1\" class=\"dataframe\">\n",
143
+ " <thead>\n",
144
+ " <tr style=\"text-align: right;\">\n",
145
+ " <th></th>\n",
146
+ " <th>VISmag</th>\n",
147
+ " <th>zs</th>\n",
148
+ " <th>z</th>\n",
149
+ " <th>zuncert</th>\n",
150
+ " <th>zwerr</th>\n",
151
+ " </tr>\n",
152
+ " </thead>\n",
153
+ " <tbody>\n",
154
+ " <tr>\n",
155
+ " <th>0</th>\n",
156
+ " <td>23.103798</td>\n",
157
+ " <td>1.103000</td>\n",
158
+ " <td>1.077487</td>\n",
159
+ " <td>0.147231</td>\n",
160
+ " <td>-0.012132</td>\n",
161
+ " </tr>\n",
162
+ " <tr>\n",
163
+ " <th>1</th>\n",
164
+ " <td>22.471019</td>\n",
165
+ " <td>0.468800</td>\n",
166
+ " <td>0.416247</td>\n",
167
+ " <td>0.177303</td>\n",
168
+ " <td>-0.035780</td>\n",
169
+ " </tr>\n",
170
+ " <tr>\n",
171
+ " <th>2</th>\n",
172
+ " <td>21.853940</td>\n",
173
+ " <td>0.694600</td>\n",
174
+ " <td>0.639316</td>\n",
175
+ " <td>0.124684</td>\n",
176
+ " <td>-0.032623</td>\n",
177
+ " </tr>\n",
178
+ " <tr>\n",
179
+ " <th>3</th>\n",
180
+ " <td>22.005561</td>\n",
181
+ " <td>0.649200</td>\n",
182
+ " <td>0.628935</td>\n",
183
+ " <td>0.128350</td>\n",
184
+ " <td>-0.012288</td>\n",
185
+ " </tr>\n",
186
+ " <tr>\n",
187
+ " <th>4</th>\n",
188
+ " <td>22.204387</td>\n",
189
+ " <td>0.666900</td>\n",
190
+ " <td>0.611376</td>\n",
191
+ " <td>0.104980</td>\n",
192
+ " <td>-0.033309</td>\n",
193
+ " </tr>\n",
194
+ " <tr>\n",
195
+ " <th>...</th>\n",
196
+ " <td>...</td>\n",
197
+ " <td>...</td>\n",
198
+ " <td>...</td>\n",
199
+ " <td>...</td>\n",
200
+ " <td>...</td>\n",
201
+ " </tr>\n",
202
+ " <tr>\n",
203
+ " <th>12048</th>\n",
204
+ " <td>22.449399</td>\n",
205
+ " <td>0.690462</td>\n",
206
+ " <td>0.722806</td>\n",
207
+ " <td>0.123866</td>\n",
208
+ " <td>0.019133</td>\n",
209
+ " </tr>\n",
210
+ " <tr>\n",
211
+ " <th>12049</th>\n",
212
+ " <td>22.102501</td>\n",
213
+ " <td>0.915746</td>\n",
214
+ " <td>0.956847</td>\n",
215
+ " <td>0.117305</td>\n",
216
+ " <td>0.021454</td>\n",
217
+ " </tr>\n",
218
+ " <tr>\n",
219
+ " <th>12050</th>\n",
220
+ " <td>22.982543</td>\n",
221
+ " <td>0.721060</td>\n",
222
+ " <td>0.745688</td>\n",
223
+ " <td>0.180621</td>\n",
224
+ " <td>0.014309</td>\n",
225
+ " </tr>\n",
226
+ " <tr>\n",
227
+ " <th>12051</th>\n",
228
+ " <td>20.037661</td>\n",
229
+ " <td>0.345100</td>\n",
230
+ " <td>0.358207</td>\n",
231
+ " <td>0.070814</td>\n",
232
+ " <td>0.009744</td>\n",
233
+ " </tr>\n",
234
+ " <tr>\n",
235
+ " <th>12052</th>\n",
236
+ " <td>22.764413</td>\n",
237
+ " <td>0.487737</td>\n",
238
+ " <td>0.363416</td>\n",
239
+ " <td>0.228689</td>\n",
240
+ " <td>-0.083564</td>\n",
241
+ " </tr>\n",
242
+ " </tbody>\n",
243
+ "</table>\n",
244
+ "<p>12053 rows × 5 columns</p>\n",
245
+ "</div>"
246
+ ],
247
+ "text/plain": [
248
+ " VISmag zs z zuncert zwerr\n",
249
+ "0 23.103798 1.103000 1.077487 0.147231 -0.012132\n",
250
+ "1 22.471019 0.468800 0.416247 0.177303 -0.035780\n",
251
+ "2 21.853940 0.694600 0.639316 0.124684 -0.032623\n",
252
+ "3 22.005561 0.649200 0.628935 0.128350 -0.012288\n",
253
+ "4 22.204387 0.666900 0.611376 0.104980 -0.033309\n",
254
+ "... ... ... ... ... ...\n",
255
+ "12048 22.449399 0.690462 0.722806 0.123866 0.019133\n",
256
+ "12049 22.102501 0.915746 0.956847 0.117305 0.021454\n",
257
+ "12050 22.982543 0.721060 0.745688 0.180621 0.014309\n",
258
+ "12051 20.037661 0.345100 0.358207 0.070814 0.009744\n",
259
+ "12052 22.764413 0.487737 0.363416 0.228689 -0.083564\n",
260
+ "\n",
261
+ "[12053 rows x 5 columns]"
262
+ ]
263
+ },
264
+ "execution_count": 76,
265
+ "metadata": {},
266
+ "output_type": "execute_result"
267
+ }
268
+ ],
269
+ "source": [
270
+ "df_test"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": null,
276
+ "id": "d72d3057-b2d6-42ee-8729-0ea6f18c0028",
277
+ "metadata": {
278
+ "tags": []
279
+ },
280
+ "outputs": [],
281
+ "source": []
282
+ },
283
+ {
284
+ "cell_type": "code",
285
+ "execution_count": 77,
286
+ "id": "78f955d8-8165-4642-99b2-f8d3d4a0cf1a",
287
+ "metadata": {
288
+ "tags": []
289
+ },
290
+ "outputs": [],
291
+ "source": [
292
+ "def plot_nz(df, bins=np.arange(0,5,0.2)):\n",
293
+ " kwargs=dict( bins=bins,alpha=0.5)\n",
294
+ " plt.hist(df.zs.values, color='grey', ls='-' ,**kwargs)\n",
295
+ " counts, _, =np.histogram(df.z.values, bins=bins)\n",
296
+ " \n",
297
+ " plt.plot((bins[:-1]+bins[1:])*0.5,counts, color ='purple')\n",
298
+ " \n",
299
+ " #plt.legend(fontsize=14)\n",
300
+ " plt.xlabel(r'Redshift', fontsize=14)\n",
301
+ " plt.ylabel(r'Counts', fontsize=14)\n",
302
+ " plt.yscale('log')\n",
303
+ " \n",
304
+ " plt.show()\n",
305
+ " "
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": 58,
311
+ "id": "fa8a38f9-d741-489b-aaaa-997f0671a1cc",
312
+ "metadata": {
313
+ "tags": []
314
+ },
315
+ "outputs": [
316
+ {
317
+ "data": {
318
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM9UlEQVR4nO3dd3hUVeI+8PdOTZ1JJ4VUgWCA0DtoQFzFXRFdFssKq64FN6sou9jLWnbFhgXzUxGFdbEX4GsBAQUpBgkQCJBQk5AeUmdSJlPv74+YkUiAZDKTO+X9PE+eNVPufTOu5OXcc88RRFEUQURERORlZFIHICIiInIFlhwiIiLySiw5RERE5JVYcoiIiMgrseQQERGRV2LJISIiIq/EkkNEREReiSWHiIiIvJJC6gBSsdlsqKioQHBwMARBkDoOERERdYMoimhqakJsbCxksvOP1fhsyamoqEB8fLzUMYiIiMgBpaWl6N+//3lf47MlJzg4GED7h6TRaCROQ0RERN2h1+sRHx9v/z1+Pj5bcjouUWk0GpYcIiIiD9OdqSaceExEREReiSWHiIiIvBJLDhEREXkllhwiIiLySiw5RERE5JVYcoiIiMgrseQQERGRV2LJISIiIq/EkkNEREReyedKTlZWFtLS0jB27FipoxAREZELCaIoilKHkIJer4dWq4VOp+O2DkRERB6iJ7+/fW4kh4iIiHwDSw4RERF5JZ/dhZx6Z+vWrU47VkZGhtOORURE1IEjOUREROSVOJLjBU5uOglDnQFJ05IQ1C9I6jhERERugSXHw9WfqMfqK1YDv9wj1y+9H5IvS0bKjBQkXpIIVZBK2oBEREQSYcnxcIWbCwERUPgrYDFYUJ1Xjeq8aux6ZRdkChn6T+yPlBkpSL4sGXHj4iBXyqWO3CWryQp9uR66El2nL31p+2NypRw3fnUjNP15uz8REXUPS46HK95aDACY8tAUjLl7DIq3FKNwcyEKNxeisagRJdtLULK9BFuf3ApVkApJGUlIntE+0hOZFglBEFyeURRFmHVmGE8bYTxtRFt1W/s/VxvRdroNexv3ormq2T4adS7ZS7NxxdIrXJ6XiIi8A0uOBxNF0V5ykqYlITAyEEPmDsGQuUMAAA2FDSj8vhBFm4tQ+H0hDHUGHPv6GI59fQwAEBQdZL+0lTIjpVujJDarDW2NbTCUG2BptsDcZIa12QpzkxmWZgssTRb7/5r1Zhhr2suMzWS74LHlajm0Cdr2r3gtNAkaaBO0aGtow6bFm5D7Xi6mPT2Nl+CIiKhbuOKxB6x4fK7btVtOtWDPLXsgU8kw+avJkKnOfbOcaBMxOHQwCje3l55T20/BYrB0ek14ajiSpydD4a9AW2Mb2hravwwNBvv3Rr3R4Z9DFaaCOkoNdT811JFq+PXzgzpKjclXTYY2QYuAyIAuR5ZEm4g3Ut9A/Yl6/P7N32PMgjEOZyAiIs/Wk9/fHMnxYI25jQAAzVDNeQsOAAgyATEjYxAzMgaTF0+Gpc2C0uxSFH1fhMLNhajIqUDd0TrUHa3r1rllfjIoghRQBiuhCFZAEfTLV/AvX4EKKDVKqCJV8IvygzpSfc6MsWNiL5h9bOZYfHf/d9j9xm6Mvmt0n1xmIyIiz8aS48F0+3UAgJARIT1+r8JPgeRpyUielozpz05HW2MbircWo2RHCSAA/qH+8Av1a//fEL/O/xzih+0/bXfyT3N+I24dgR8e+wE1h2tQvKUYydOT+/T8RETkeVhyPJQoimg80AjAsZLzW34hfhg8ezAGzx7c62O5gp/WD8PnD8eeN/dg9xu7WXKIiOiCuOKxh2otboW50QyZWobgwcFSx+kTYzPHAgCOrjuKxlON0oYhIiK3x5EcD9W4vxHAL/NxlJ7dVXuyD1bIyBA05jbiy4e/RMqdKWc9z32wiIiog2f/dnRAVlYW0tLSMHbsWKmj9EpHyXHGpSpPEnddHACg8ptKWI1WidMQEZE787mSk5mZifz8fOTk5EgdxWGiTYTugOOTjj1Z+MRwqPupYdFbcPr701LHISIiN+ZzJccbtJ5qhVlnhsxPhuBU35iP00GQC4i9pv2W84o1FfDRZZ6IiKgbWHI8UMf6ONqhWo+fj+OImKtiIFPJ0HyiGfpDeqnjEBGRm/K935BewFfn43RQapWIuiwKAFC+plziNERE5K54d5WHEW1nrI8zMqRH7+3JXUzuLu66OFStr0LttloYa41QR6iljkRERG6GIzkepqWoBRa9BTI/GYIGBUkdRzJBA4KgGaaBaBVR+VWl1HGIiMgNseR4GPt8nGFayBS+/a8vbnb77eQVX1XAZr7wLudERORbfPu3pAdy9FKVN4q4JAKqCBXMDWbUbK2ROg4REbkZlhwP0ml9nOEh0oZxAzKFDLFXt99OzgnIRET0Wyw5HqSlsAWWJgvk/nKfWx/nXGL+EANBIaCpoAn6I7ydnIiIfsWS40E6bh3XpmshyAVpw7gJVZgKkRmRANoXByQiIurAkuNBOiYd++r6OOcSd237BOTTW06j5XSLxGmIiMhdsOR4CNEqQpfXPh9HO0IrcRr3oknTIHhwMESziL3v7JU6DhERuQmWHA/RXNgMS7MF8gA5ggdyPs5vdYzm7HlzD6xm7k5OREQsOR7Dvj4O5+N0KTIjEsoQJZrKm3B03VGp4xARkRtgyfEQ9lvHOR+nSzKVDDF/iAEA7F62W+I0RETkDlhyPIBoPWO/Kpacc4qdFQtBLuDUtlOozquWOg4REUmMJccDNJ9ohrXFCnmgHEEDfHe/qgtRR6px8XUXAwB+XvazxGmIiEhqLDkegOvjdN+4e8YBAA5+cBCGeoPEaYiISEosOR6go+TwUtWFJUxJQL/0frAYLMh9L1fqOEREJCGWHDdns9igO8hJx90lCIJ9NCcnKwc2K3cnJyLyVSw5bq4ytxLWFisUQQoEXcT5ON0x7KZh8Av1Q2NxI45/c1zqOEREJBGWHDdXvLUYAOfj9IQyQIlRt48CwNvJiYh8mceXnJaWFixevBhXXnklnnvuOanjOF3xlmIAvFTVU2PuHgMIQOHmQtQU1Egdh4iIJOCWJcdgMECn03XrtUVFRViyZAnWr1+P77//3sXJ+pbNYkPJ9hIAQMjIEGnDeJjQ5FCkXp0KoH1uDhER+R63Kjk2mw2rVq3CoEGDkJv7650xRUVFWLBgAZYvX4758+fj1KlT9ueGDh0KuVyOXbt24Y477pAitstU7quEqdkERbACgSmBUsfxOB0TkA/89wCMeqPEaYiIqK+5Vcmpra3FtGnTUFZWZn/MZrNh1qxZmDt3Lu68807MmzcPN9xwQ6f3lZSU4K233sJTTz2Ftra2vo7tMkVbigAA2uFaCDLOx+mp5MuSEXFxBEzNJuxftV/qOERE1MfcquRERUUhMTGx02PfffcdTpw4galTpwIApk+fjry8POTk/HoJIiEhAf/9738xfPhwHDx4sE8zu9Kpre0jViHDQ6QN4qEEQcC4v7eP5ux+YzdEmyhxIiIi6ktuVXK6kp2djZSUFCiVSgCAXC5HSkoKtmzZctZrY2JikJKS0uVxjEYj9Hp9py93ZjVbcWr7LyWH83Eclj4vHapgFeqP1+PkppNSxyEioj7k9iWnuroaGo2m02NarRbl5eUAgNdeew033XQTvv76a1x11VUIDw/v8jjPPfcctFqt/Ss+Pt7l2Xujcm8lzC1m+If5IzCZ83EcpQ5WY8StIwDwdnIiIl+jkDrAhSiVSvsoTgebzQabrX0l24ULF3brOA8//DAWLVpk/16v17t10elYHyfx0kTOx+mlcZnjsPv13Tj+7XHUn6xH2EVhUkciIqI+4PYjOTExMWddWtLpdIiLi+vRcdRqNTQaTacvd9axPk7StCRJc3iD8EHhGHDlAEDk7eRERL7E7UdyMjIy8MILL0AURQiCALPZjOLiYkybNk3qaC5jNVtRsqN9fZykjCQU1BVInMhzbN26tcvH/S7xAzYAOctzoLhcAbm//LzHycjIcH44IiLqU243ktNxGarDxIkTERsbi+3btwMAtm3bhqSkJIwbN86h42dlZSEtLQ1jx47tdVZXqcipgLnVjICIAEQNiZI6jlcIGx8Gv1g/WFusqN5ULXUcIiLqA25VcmpqarBkyRIAwOrVq3HkyBHIZDKsW7cOK1asQFZWFlauXIk1a9ZAEBybp5KZmYn8/PxOt6C7G87HcT5BJiBudvslzvI15RBF3k5OROTtBNFH/7TX6/XQarXQ6XRuNz/nf5f/D4WbCzFz2UyM+/u4c16CoZ6xNFuQ/ads2NpsGPbiMISNOfcEZF6uIiJyTz35/e1WIzkEWE1WlOz8ZT4OJx07lSJIgZiZMQCAsk/LLvBqIiLydCw5bqY8pxwWgwUBkQGITIuUOo7XiZsTB8iAhpwGNJ9sljoOERG5kM+VHHefeGy/dTwjyeF5R3Ru/rH+iJzaXh7LPuNoDhGRN+OcHBfNyXF0Hs2BfxxA475GDFg4wD5RlpxLn69HbmYuBIWA8R+OhzpSfdZrOCeHiMg9cU6Oh7KZbNAfal/4MGREiLRhvJgmTQPNMA1Ei4jyNeVSxyEiIhdhyXEj+iN62Ew2KEOVCEgMkDqOV4uf276lR+VXlbC0WiROQ0RErsCS40Z0+3UAgJDhIZyP42Lhk8Lh398flmYLqr6tkjoOERG5AEuOG2nc3wgACBkZImkOXyDIBPT/U38AQNnnZRCtPjk1jYjIq/lcyXHXu6tsJhv0hzkfpy/1u6IflFoljNVG1PxYI3UcIiJyMp8rOe66rYM+v30+jipMBf94f6nj+AS5Wo7Y2bEA2hcH9NEbDYmIvJbPlRx31XigEQCgHaHlfJw+FHtNLGQqGZqONkGXp5M6DhERORFLjpuwz8cZHiJpDl+jClWh3xX9AHCrByIib8OS4wY6zcfhpOM+139Of0AA6n6qQ2tJq9RxiIjISVhy3IA+Xw/RLEIVroJ/f87H6WsBCQEInxQOgKM5RETexOdKjjveXdWY2wig/a4qzseRRvz17YsDVm2sgqneJHEaIiJyBp8rOe54d5V9Pg5vHZeMZqgGwYODIZpFVKyrkDoOERE5gc+VHHdjNVqhL2ifj6MdoZU4je8SBME+mlO+thzmVrPEiYiIqLdYciSmP/zLfJwIFfzjOB9HShFTI+AX4weL3oL9/90vdRwiIuollhyJnXmpivNxpCXIhfY7rQDsWroLNqtN4kRERNQbLDkS43wc9xI9MxqKYAXqT9Tj6P8dlToOERH1AkuOhKxtVjQVNAFgyXEXcn85Yme1b/WQ/XK2xGmIiKg3WHIkpD+sh2gRoY5Uwy/WT+o49IvYa2MhV8lRurMUpdmlUschIiIH+VzJcad1cjgfxz2pw9UY9udhADiaQ0TkyXyu5LjTOjkdJYe3jrufif+YCAAo+LIA9SfrJU5DRESO8LmS4y6sBiuajvwyH4f7VbmdqCFRGDBzACACu17ZJXUcIiJyAEuORHSHde3zcfqp4RfN+TjuaNI/JwEA9q/cj9Y6btxJRORpWHIkwv2q3F/StCREj4yGudWMPW/tkToOERH1EEuORHQHdAB467g7EwTBPjdn97LdsLRZJE5EREQ9wZIjgU7zcVhy3NqQuUOg6a9BS3UL8j7IkzoOERH1AEuOBGR+Mox+dzRSH0jlfBw3J1fKMf6+8QDabycXbaLEiYiIqLtYciQgCAICEwMRPTNa6ijUDaPvGA21Ro3aglqc2HBC6jhERNRNLDlEF6DWqDHqzlEAgJ9e+kniNERE1F0+V3LcacVj8hzj7x0PmUKG4i3FqNhbIXUcIiLqBp8rOe604jF5Dm28FkOuHwKAWz0QEXkKnys5RI7quJ388KeHoSvRSZyGiIguhCWHqJtiRsYg+bJkiFYRu17jVg9ERO6OJYeoBzq2eti3fB/aGtskTkNEROfDkkPUAxddcRGihkbB1GzC3nf2Sh2HiIjOgyWHqAfO3Orh59d+htVklTgRERGdC0sOUQ8NvXEogqKD0FTehEOfHJI6DhERnYNC6gBE7mjr1q3nfT7yD5FoXtGMDQ9tQHVQNVShqnO+NiMjw7nhiIioWziSQ+SA2Gtioe6nRltFG/IW58HcZJY6EhER/QZLDpEDFEEKpL+UDmWoEi0nW3DwwYOwtFqkjkVERGdgySFyUED/AAx/eTgUGgWaCppw6JFDsLZxIjIRkbvwuZLDvavImQKTA5H+QjrkgXLoDuhw+MnDsJlsUsciIiL4YMnh3lXkbMGpwRj23DDI/GRo2N2AgmcLIFpFqWMREfk8nys5RK6gHabF0GeHQlAKqN1eiyPPH4FoY9EhIpISSw6Rk4SODkXav9IgyAWc3nQax185DlFk0SEikgrXySFyoohJERj8yGAUPFuAyq8rIfNr/3uEIAhOOT7X3CEi6j6O5BA5WdT0KAz65yAAQPnn5Ti16pTEiYiIfBNLDpELxFwVgwH3DAAAnHr/FEo+KpE4ERGR72HJIXKRuOvikHxHMgCgaHkRyteWS5yIiMi3sOQQuVDCTQlIuDkBAHDitROo2lAlcSIiIt/BkkPkYkm3JSHuj3EAgKMvHkXN1hqJExER+QaWHCIXEwQBF2VehOjfRwM2oODZAtRl10kdi4jI67HkEPUBQRAw6P5BiLosCqJVxOEnD6NhX4PUsYiIvBpLDlEfEeQCUh9KRfiUcIhmEYcePQTdIZ3UsYiIvBZLDlEfkilkSHs8DaFjQmFrs+HgQwfRdKxJ6lhERF6JJYeoj8lUMgx5Zgi06VpYW6zIW5yHlqIWqWMREXkdlhwiCcj95Bj6n6EIHhwMi96CvH/mwVBukDoWEZFXYckhkogiUIFhzw9DYEogTPUmHHnuCDf0JCJyIp8rOVlZWUhLS8PYsWOljkIEpUaJYUuGQeYng/6wHrXbaqWORETkNXyu5GRmZiI/Px85OTlSRyECAKgj1Yi/Ph4AULi8EDazTeJERETewedKDpE7ir8+HqowFdoq2lCxrkLqOEREXoElh8gNyP3lSLotCUD7ruXmJrO0gbxca20rvv37t3gh/AUceP+A1HGIyEVYcojcRPSV0QhMDoSlyYKSD0qkjuOVLEYLfnrpJ7w+4HXkZOXAUG/A1ie3QrRxwjeRN2LJIXITglxA8l3JAIDyL8thqOQt5c4iiiIOf3YYWRdnYdPiTTDqjIgeEQ21Ro3G4kYUbSmSOiIRuQBLDpEbCRsXhpDRIRDNIopW8BevM5TvLsfKKSvx+dzP0VjUiODYYFyz8hrcsecODL1xKAAg991ciVMSkSuw5BC5EUEQcNGCiwABqPmhBvp8vdSRPJauRIcv//wlVoxfgdKfSqEMUOLSf12Kvx/7O0bcMgIyuQwj/zoSAFDwZQEMDRw5I/I2LDlEbiZoQBD6XdEPAHDyrZNcILCHjE1GfP/o93gj9Q0c/PAgIAAjbhmBvx/7OzKezIAqUGV/beyYWEQNi4LVaG1/LRF5FZYcIjeUfFsyZGoZ9Af1qNtZJ3Ucj2Cz2LB3+V4sG7AMO/6zA5Y2C5IyknDnnjtxzcproInTnPUeQRDsozm8ZEXkfVhyiNyQOlKN/n/qDwAofLsQNgsXCDyfkxtP4u2Rb+Pru75Gy+kWhA0Mw/Vrr8f8H+YjZlTMed+bfnM65Co5qnKrUJlb2UeJiagvsOQQuan4G+OhDFXCUGZA5Vf85duVmvwafHDVB1h9xWqcPnQafqF+uPK1K/G3Q3/D4GsGQxCECx4jIDwAg2cPBsDRHCJvw5JD5KYUAQok3ZIEACheVQxLs0XaQG6k5XQLvr77a7yZ/iZOrD8BmVKGCfdPwL0n7sX4e8dDrpL36Hgdl6wOfnAQZgMXYiTyFgqpAxDRucX8PgblX5SjtaQVJR+WAH+QOpF0bBYbqvOqcezrY/jppZ9gajIBAAZfOxgznp+B8IHhDh87+bJkaOI10JfqcWTNEQy7aZizYhORhFhyiNxYxwKBhx89jLLPy6BbooM2QSt1rD5hajGh/OdylOwoQcmOEpRll8HUbLI/HzMqBr9b+jskXZrU63PJ5DKMuHUEtj29Dbnv5bLkEHkJlhwiNxc+MRzaEVro9uvww6M/4Nr/XSt1JJdoOd2Ckp3thaZ0Rykq91WeNeFarVEjfnI8ht00DMNuGgZBduE5N9018taR2PbMNhR9X4SGogaEJoc67dhEJA2WHCI317FA4L4F+5C3Og/j7xuP2NGxUsfqFVEU0XCywT5KU7K9BHXHzr5VXtNfg4SpCUiY0v4VOSQSMnn3phJu3bq1x7lCRoWgcW8j1j65Fsm3Jdsfz8jI6PGxiEh6LDlEHiA4NRhRl0fh9KbT2PTPTZj/w/xu3TnkLmwWG6oOVNkLTcmOErRUt5z1uqihUYifEm8vNdoEbZ/+nDFXxaBxbyOqN1Qj6S9JEOSe8xkT0dlYcog8RPJfk1G3rQ7FW4tx7OtjSL06VepIF2QxWrBvxT7s+M8ONFU0dXpOrpIjdmysvdDET4qHf5i/REnbRUyJgCJYAWONEQ17GxA2LkzSPETUOyw5RB7Cr58fJtw3ATuf34nND2zGwJkDIVO45yoQVrMVB94/gG1Pb4OuRAcAUGvVSJicYB+piRsbB4Wfe/0RJFPJ0G9GP5SvKUflt5UsOUQezr3+hCGi85ry8BTsW7EPtUdqsW/FPoxZMEbqSJ3YrDYc+ugQtv5rKxpONgAAgmKCMPXRqRh1+ygo1O7/R070VdEoX1OOup11MDWaoApRXfhNROSW3POvgUTUJT+tHzL+lQEA2PrkVhj1RmkD/UK0iTj82WG8OexNrJm3Bg0nGxAQGYDfvfw73HvyXozLHOcRBQdo3yA1aGAQRIuI05tPSx2HiHqBJYfIw4y+azTCBoah5XQLdr6wU9Isoiji6FdH8faot/H53M9RW1ALv1A/TP/PdCwsXIiJiyZC6a+UNKMjoq+KBgBUfVvFXeCJPBhLDpGHkSvluPyFywEA2S9nQ1+m7/MMoiji5MaTeHfCu/h41seoPlANVbAKlz55KRYWLcTUh6dCFeS5l3n6zegHmUqGlqIWNB1puvAbiMgteXzJqaiowJw5c5CUlIQnnnhC6jhEfSL1mlQkTEmApc2CHx77oU/PXfxjMVZdugqrr1iN8t3lUAYoMfmhyVhYtBAZ/8qAn9avT/O4giJIgYhLIgC0j+YQkWdyy4vkBoMBJpMJWu2Fl6/fvn07PvnkE7S0tGDQoEFYtGgRQkJCXB+SSEKCIODyly7HuxPexYH3D2DCfRMQPSLapecs21WGLY9vQeHmQgCAXC3HmLvHYMpDU7CnYA92H9zd63O406J70VdF4/Tm0zj9w2mYWkxQBXruyBSRr3KrkmOz2fD+++/j8ccfx//+9z/7H3hFRUV4/vnnMWrUKOzYsQPPPPMMEhMTAQDXXXcd5HI5NBoN0tLS4O8v7TobRK7021V8I6dHouaHGnzy10+Q/lJ6jxbO626hqMytxJbHt+D4N8cBADKlDKNuH4Wpj06FJk7T/qKCbp/WY4QMD4FfrB/aKtqQ/3k+RvxlhNSRiKiH3Krk1NbWYtq0aSgrK7M/ZrPZMGvWLLz22muYPn06kpOTccMNNyA7OxsAoFS2T2qsqanBjBkzoFarJclOJIXk25NRu70WjfsaUb+7HuHjHd+J+0wWowVlu8qwe9luFHzR3mAEuYDhfxmOSx+/FCFJIU45jzsTZAKiZ0aj+N1i5L6by5JD5IHcquRERUWd9dh3332HEydOYOrUqQCA6dOnY/bs2cjJycHYsWMBtE+C/Oqrr/Dggw+e89hGoxFG46+32+r1fT9Zk8jZ/GP8EXdtHMo+LUPhm4UIGxPm0FYENosNlfsqUfRDEYp+KELJjhJYDJb2JwVg2E3DcOmTlyJ8oHNKlKeIviIaxSuL7XtrhQ/yrZ+fyNO5VcnpSnZ2NlJSUuwjNnK5HCkpKdiyZYu95KxZswbXX3895HI5Tp06Zb+UdabnnnsOTz31VJ9mJ+oLCTcnoGp9FVpPtaJqfRVi/hBzwfeINhHVedX2UnPqx1NnrbkT2C8QA64YgEkPTELUkLP/AuIL1JFqhI0NQ/3P9chdmYsZz82QOhIR9YDbl5zq6mpoNJpOj2m1WpSXlwMA3nzzTSxZsgTBwcEwmUx44403uiw5Dz/8MBYtWmT/Xq/XIz4+3rXhifqAMliJxPmJOJl1EsUrixF1WRTk/vJOrxFFEYZyAxr3NaIxtxGN+xuxrXFbp9f4hfghKSMJSdOTkDw9GZFpkX2+CagjO4e7WvTMaNT/XI8D/z2A6c9Md9utNIjobG5fcpRKpX0Up4PNZoPNZgMA3H333bj77rsveBy1Ws35OuS1Yq+JRfmacrRVtKH0k1Ik3ZKEttNtv5aa3EYYazqP1CgDlEi8JNFeaqJHREMm5y/w3wqfFI6AyAA0Vzbj+PrjHrExKhG1c2rJMRgMKCgoQGpqKgIDA51yzJiYGOzYsaPTYzqdDnFxcU45PpE3kCllSLkzBfn/ykfpx6U4vfk0DOWGTq8RlAI0aRqEjgpFyMgQ/OGuP0Cukp/jiNRBppQhfV46di3dhdx3c1lyiDyIwyVn0aJFkMvluPbaazFp0iQUFxdj6tSpqKioQHh4OL799luMGdP7zQMzMjLwwgsvQBRFCIIAs9mM4uJiTJs2rdfHJvImEZdEQDNEA/1hfXvBkQHBqcEIGRmC0FGh0AzRQO73a6lhwem+UX8dhV1Ld+HY18fQXNWMoOggh4/lzEty7rSuEJE7crjkfPrpp/j++++Rmtr+t5rbbrsNdXV1+OijjxAfH4+XX34ZH330UY+P23EZqsPEiRMRGxuL7du345JLLsG2bduQlJSEcePGOZQ7KysLWVlZsFqtDr2fyF0JgoCLH78Y1ZuqEXRRELTDtFAEuf0VaY8QmRaJ/hP6o2xXGQ68fwCTH5gsdSQi6gaHL8Dfcccd9oLz0UcfYevWrVi8eDHmzp2LiRMnYuTIkT0+Zk1NDZYsWQIAWL16NY4cOQKZTIZ169ZhxYoVyMrKwsqVK7FmzRqHJ0RmZmYiPz8fOTk5Dr2fyJ359fND4s2JCJ8YzoLjZCP/2v5nWu57udy0k8hDOPynoJ9f+/40NTU1+Oc//4mEhAQ88MAD9ucLCwt7fMzIyEg88sgjeOSRRzo9PmjQILz//vsA2ksKEVFfGzJ3CDYs3IC6o3Uo/akUCZMTpI5ERBfgcMkxmUy49tprsW/fPuh0OmzcuBGBgYEwm8145513sHLlSrz11lvOzEpETuSOt2u7M7VGjSFzh2D/qv3IfTeXJYfIAzh8uerxxx/Hrbfeivvuuw95eXmYNGkSzGYzli1bhpqamrNGY4iIPF3HJavDnx6Gscl4gVcTkdQcHslpamrCrFmzOj2mVCqxaNEi/PTTTxg/fnyvw7kCJx4TkaPiJ8cjPDUcdUfrcPiTwxh1+yipIxHReThcchYuXIj33nuvy+fCwsJw//334/XXX3c4mKtkZmYiMzMTer0eWq1W6jhE5EEEQcDI20Zi84ObkfturuQlx1mXHHkrOnmrHl2uamlpQUlJCUpKStDc3IzS0lL79x1fJ0+exObNm/Hf//7XVZmJiCQzfP5wCHIBZbvKUJNfI3UcIjqPHo3kNDU14Y477sDmzZsBAF988UWXrxNFERMmTOh9OiIiNxMUHYRBfxiEo+uOIve9XPzupd9JHYmIzqFHJSc6OhobNmzAwoULsX37dsyePfus18jlcsTHx+Paa691VkYiIrcy8q8jcXTdURx4/wAu+89lXD2ayE31eE6OIAh4/fXXsWnTJlx++eWuyERE5NYGzhyIoOggNFc149jXx3DxdRdLHYmIuuDwxOMLFZx169bhmmuucfTwLsO7q4iop7qa4Bs6LRTNHzVj8wubUR1W3fehiOiCBNHB9cltNhs+/fRT7N69GzqdrtMy5xaLBZs3b0ZFRYXTgjpbx91VOp0OGo3G6cfnQmtE3q21tBU583MAGTDh4wlQR6qljuQw3l1FnqQnv78dHsm5/fbbsWrVqnM+7+jeUkREniAgPgDadC10eTpUfVeFxJsTpY7kMO6MTt7K4RWPv/jiCzz66KNoaGiAzWbr9KXT6XDXXXc5MycRkduJnhkNAKhaXwXRxk07idyNwyUnJSUFt956a5cL6gUHB9t3Eyci8laRl0ZCHiBHW0UbdHk6qeMQ0W84XHJefPFFfPnll+d8fuPGjY4emojII8j95YiaHgUAqPy2UuI0RPRbDs/J2bhxIzZu3Ii8vDwoFJ0PY7PZsGnTJsyZM6fXAZ2Nd1cRkTNFXxWNyq8rUftjLSz3WqAIcviPVSJyMof/azx69Cjy8vKQl5fX5fPuOvGYe1cRkTMFDw5GQFIAWotbUfZFGZL+kiR1JCL6hcOXq+bMmYNdu3adNenYZrPBYDDgvvvuc2JMIiL3JAgCEue131lV8kEJWktaJU5ERB16VXKGDBnS5XMqlQqPPfaYw6GIiDxJ5LRIhI0Pg2gWcezlY7zTishNOFxy/P39ERgY2OVzu3fvxr59+xwORUTkSQRBwMD7BkLmJ4MuT4fKbzgJmcgdODwnJyUl5ZzPVVdX469//Ssuu+wyRw9PRORR/KL9kPzXZJzMOonCtwsRPikc6nDPXQWZyBs4XHJqa2sxYsQIyOWdd9/V6/UIDw9HUFBQr8MREXmSuGvjcPr702g60oQTr5/AkKe6vqRPRH3D4ZLz6quv4rbbbuvyucWLF2PWrFkOhyIi8kSCXMCgfwzC3rv2onZbLWp31CJiSoTUsYh8Vq8mHp/LDTfcgIULFzp6aJfKyspCWloaxo4dK3UUIvJCQQOCEH9DPADg+GvHYWmxSJyIyHc5XHLOt/PnwYMHcfjwYUcP7VKZmZnIz89HTk6O1FGIyEslzk+Ef5w/TLUmFL1TJHUcIp/l8OWq6dOnd/l4a2sr9u7di6lTpzociojIk8nVcgz8x0DkLcpDxboKRF0WBe0wLj5K1NccLjk//vgjYmNjz9rSQaVS4brrrsOLL77Y63BERJ4qdGQoomdGo2p9FY69fAyjl4+GTOXw4DkROaBXE4/vueceZ2YhIvIqKQtSULerDq2nWlHyUQm3fCDqYw7/tWLBggX2f25ra0NVVRUsFk6wIyLqoNQoMeDvAwC0b/nQcqpF4kREvsXhkqNUKnHw4EFcdtllCA4ORlxcHDQaDebOnYuSkhJnZiQi8liR0yIRNuGXLR9e4pYPRH3J4ctVBQUFmDx5MoxGI4YPH46kpCRYrVYcOHAA48aNw+7du5GQkODMrEREHqdjy4c9t+6B/pAelV9XInZWrNSxiHyCwyM5jzzyCK688kocP34ce/bsweeff441a9bg6NGjeOONN/D00087MycRkcfy6+eHpL8mAQAKlxfCWGOUNhCRj3C45NTX1+Pjjz/ucrRmzpw5UKlUvQrmKlwMkIikEDc7DsEXB8PaYsWJZSekjkPkExwuOSNHjoRMdu6319XVOXpol+JigEQkBUEuYNA/B0GQC6jdXova7bVSRyLyeg6XnLq6OhiNXQ+5fvjhhygq4iqfRERnCkoJQvyNZ2z50Mw7UolcyeGJx1dccQUmTZqEv/3tb0hMTITRaERBQQHWrl2L7OxsfPzxx87MSUTkFRLnJaLmxxoYSg0oXF6IQYsGSR2JyGs5XHJuvvlmHDt2DAsWLIDNZgMAiKIItVqNpUuX4k9/+pPTQhIReQuZSoZBiwbhwP0HUPlVJaJmRCEkPUTqWEReyeGSAwBPP/00brvtNmzcuBG1tbWIjY3FlVdeiejoaGflIyLyOiEjQhD9+2hUfVOF4y8fx+h3uOUDkSt0u+SkpaWhtbUVBoMBY8aMweOPP44JEyYgKSkJd955p/1177zzDmw2G+666y6XBCYi8gYpd6Wg7qc6tJa0ouSDEiTdmiR1JCKv0+2/Ohw5cgSnT5/G22+/jW+++QYTJkzo8nV33HEHfvzxRxw9etRpIYmIvI0yWImB9w4EAJR8WIKWIm75QORsPRofXbp0KWbPnn3B1z300EN44403HM1EROQTIi6NQPikcIgWEcde5pYPRM7W7ZKj1Wpx++23d+u16enp+Pnnnx0ORUTkCwRBwICFAyD3l0N/WI+K/6uQOhKRV+l2yUlOToZC0f15yk1NTQ4FIiLyJX5Rfki+IxkAUPROEbd8IHKibpectra2bh/UbDbj9OnTDgUiIvI1sdfEQjNEA2urFcdfPQ5R5GUrImfodsmRy+U4cOBAt167fv16REZGOhyKiMiXCDIBg/4xCIJCQN1Pdajdxi0fiJyh2yVn5syZuPPOO2EwGM77urq6OixevBgzZszodThX4AadROSOApMDf93y4dXjqPiqAlaDVeJURJ5NELs5LlpdXY3U1FT0798fL7zwAmbOnAlBEOzPm81mrF27Fg8++CAqKytx8OBBDBgwwGXBe0uv10Or1UKn00Gj0Tj9+Fu3bnX6MYnIu9lMNuy7ex9aCttvJ1cEKRD9+2jEzY6DX7SfxOm6JyMjQ+oI5OV68vu72zOJ+/Xrh08++QSzZ8/G1VdfjcDAQKSmpsLf3x86nQ7Hjh2DyWQCAKxYscKtCw4RkTuSqWQY8foIVK2vQvmacrRVtKHskzKUfVaG8InhiLsuDiEjQzr9BZOIzq3bIzkdcnNz8be//a3LW8QTExPx2muvYdasWU4L6CocySEidyZaRdTvrkf5l+Vo2NNgfzwgKQBx18Wh34x+kPvLJUzoehwVoq705Pd3j0tOh0OHDiE7Oxu1tbUIDg7G8OHDMWnSJMjlnvEfHUsOEXmKllMtqFhTgarvqmBra98Q2RMvZfUUSw51pU9KjqdjySEiT2NptqBqw6+XsgAAMnjtpSyWHOqKS+bkEBGRtBRBCvSf0x9x18Z1upRVt7MOdTvr2i9lXRuHfpc7filLtIowNZpgqm//MjeYYao3wdJsQeSlkQhODXbyT0XkOiw5REQeRpALCJ8YjvCJ4Z0uZbUWt+L4K8dR9E5Rp0tZok2EWW+2FxZTvQmmhrOLjKneBLPODJxjfL/8i3IM/c9QhI4O7dsfmMhBvFzFy1VE5AW6vJQlAKowFUwNJsDWg4PJAFWICspQJVRhKqjCVDBUGKA/qIdMLcPQ54YidKTriw4vV1FXeLmKiMjHnOtSlqnO9OtrNAp7aVGFquz/fGaZUYWqoNQqIcg7z+2xmWw4/MRh1P9cj0OPHMKw54YhZERIH/+URD3DkkNE5EXOvJRlqDTAorfYi4xM0e1F7s8iU8kw5OkhOPT4ITTsbsDBhw9i2PPDEJIe4rzwRE7m+P/jiYjIrfnH+CM4NRjqSHWvCk4HmUqGoc8MReiYUNjabDj44EHoDuqckJTINVhyiIio22QqGYY8OwQho0N+LTqHWXTIPXHiMSceExH1mLXNikOPHEJjbiPkAXKkv5gOTZrz/yx1Fk5i9h49+f3NkRwiIuoxuZ8cQ/89FNoRWlhbrch7IA/6Ar3UsYg6YckhIiKHyP3lGPafYdCma2FtsSJvcR6ajjZJHYvIjiWHiIgcJveXY9iSYdAM07QXnX/moekYiw65B58rOVlZWUhLS8PYsWOljkJE5BXsRWeIBpZmS3vROc6iQ9LzuZKTmZmJ/Px85OTkSB2FiMhrKAIUGPb8MASnBcPS1F50mk80Sx2LfJzPlRwiInINRaAC6c+nI3hwMCx6Cw784wCaC1l0SDosOURE5DSKIAXSX0xHcGp70cn7Rx5ailqkjkU+iiWHiIicShGkwLAXhyFoYBDMjWYc+McBtBSz6FDfY8khIiKnUwYrkf5SenvRaTDjwKIDaC1plToW+RiWHCIicgmlRon0F9MReFFge9G5n0WH+ha3deC2DkRELmXWtY/ktBS2QBWuwvBXhyOgf4DUsRzC7SGkx20diIjIbSi1SqS/nI7A5ECY6kztIzqlHNEh12PJISIil1OFqJD+cjoCEgNgqjUh9++5aNzfKHUs8nIsOURE1CdUoSoMf2U4gi/+5fbyxXmo2lAldSzyYiw5RETUZzqKTmRGJESLiKPPH0XhO4UQbT45PZRcjCWHiIj6lFwtx8WPX4yEeQkAgNIPS5H/VD6sbVaJk5G3YckhIqI+J8gEJN+WjMEPD4agFFC7rRYH7jsAY51R6mjkRVhyiIhIMv1+1w/DXx4OhUaBpqNNyP1bLjf2JKdRSB2AiIh8m3aYFqP+3ygceuQQWktasf/e/bj48YsRPjFc6mgu5cz11Lh+T9c4kkNERJLzj/PHiDdGIGRUCKwGKw49dghln5fBR9erJSdhySEiIregDFZi2PPDEPOHGMAGnMw6iROvnoBoZdEhx/ByFRERuQ2ZQoaBiwbCP94fhW8VouL/KmCoMCDtyTQogvgr61x46atrHMkhIiK3IggC4ufGY8jTQyDzk6FhTwNy/54LQ6VB6mjkYVhyiIjILUVMicCI10dAFaFC66lW5P4tF7pDOqljkQdhySEiIrcVPDAYo/7fKAQNDIK5sX0389Pfn5Y6FnkIryk5hw4dkjoCERG5gDpSjRGvjUD4lHCIZhEFzxag+L/FvPOKLsgrSs6ePXswYcIEqWMQEZGLyP3lGPLUEMTfEA8AOLXqFI78+whsJpvEycidecVU9TFjxiAiIkLqGERE5EKCTEDKXSnw7++P468cx+nvT8NQbkC/K/pBc7EGgRcFQqbwir+7k5O4ZckxGAwwmUzQarVSRyEiIjcT8/sY+MX4If/JfDQdaULTkSYAgEwlQ9CgIGgu1iD44mBo0jRQR6khCILTzu3MW7XdlTfdju5WJcdms+H999/H448/jv/973/2D6eoqAjPP/88Ro0ahR07duCZZ55BYmKitGGJiEgyoaNCMWr5KFRvqIa+QI+mgiZYmi3QH9JDf0hvf50qTNVeeH4pPsGDg6EIcKtffeRCbvVvura2FtOmTUNZWZn9MZvNhlmzZuG1117D9OnTkZycjBtuuAHZ2dkSJiUiIqn5x/gj6dYkAIBoE2EoM9gLjz5fj5bCFpjqTajbWYe6nXXtbxKAwKTATsUnMCkQgtx5oz3kPtyq5ERFRZ312HfffYcTJ05g6tSpAIDp06dj9uzZyMnJwdixY7t9bKPRCKPRaP9er9ef59VERORJBJmAgIQABCQEIPqKaACA1WhF87Hm9uKT3wT9ET2M1Ua0FLWgpagFVd9WAWif1ByUGoSIyRHoP6e/lD8GOZlblZyuZGdnIyUlBUqlEgAgl8uRkpKCLVu22EvOvn37UFNTg02bNuHyyy/v8jjPPfccnnrqqT7LTURE0pKr5dAO00I77Nf5ncY6Y/tIzy8jPk1HmmA1WKHbr4Nuvw4ho0IQlBIkYWpyJrcvOdXV1dBoNJ0e02q1KC8vt38/atQotLS0nPc4Dz/8MBYtWmT/Xq/XIz4+3rlhiYjIranD1VBPUSNiSvsduaJVRMupFhxfehz6w3o05DSw5HgRt7/XTqlU2kdxOthsNthsPVsbQa1WQ6PRdPoiIiLfJsgFBKUEITIjEgDQsKdB4kTkTG5fcmJiYs6aP6PT6RAXFydRIiIi8jahY0MBAI0HGmE1WiVOQ87i9iUnIyMDRUVF9uW7zWYziouLMW3aNImTERGRtwhICIA6Sg3RLEKXx01AvYXblZzfXoaaOHEiYmNjsX37dgDAtm3bkJSUhHHjxjl0/KysLKSlpfXoziwiIvJugiAgdEz7aE5DDi9ZeQu3Kjk1NTVYsmQJAGD16tU4cuQIZDIZ1q1bhxUrViArKwsrV67EmjVrHF7BMjMzE/n5+cjJyXFmdCIi8nD2ksN5OV5DEH10G1e9Xg+tVgudTueSSci+sPQ3EZE3MevM+OnanwARmPDZBKgj1FJH8niu2NahJ7+/3Wokh4iISCpKrRLBqcEAOJrjLVhyiIiIftFxlxXn5XgHnys5nHhMRETnYp+Xs7cBos0nZ3N4FZ8rOZx4TERE56JJ00AeIIdZZ0bziWap41Av+VzJISIiOheZQoaQkSEAeMnKG7DkEBERnaHjklX9nnqJk1BvseQQERGdIWxsGABAf0gPq4FbPHgylhwiIqIz+MX6wS/GD6JFROP+RqnjUC/4XMnh3VVERHQ+giDwVnIv4XMlh3dXERHRhYSNab9kxXk5ns3nSg4REdGFhIwMAWSAodSAtqo2qeOQg1hyiIiIfkMRpIDm4vZ9kRr28pKVp2LJISIi6kLHvJz6HF6y8lQsOURERF3ouJW8cW8jRCu3ePBEPldyeHcVERF1R3BqMBRBCliaLWg62iR1HHKAz5Uc3l1FRETdIcgFhIwKAQA07OG8HE/kcyWHiIiouzouWXFejmdiySEiIjqHjn2s9Pl6WJotEqehnmLJISIiOge/aD/4x/sDNnCLBw/EkkNERHQeHaM53OLB87DkEBERnYd9Xo4EWzzYLLY+P6c3YckhIiI6j5ARIRAUAtoq2mAoN/TZeRsPNGLHVTtQ9F5Rn53T2/hcyeE6OURE1BNyfzk0Q37Z4qGPbiUXRRFF7xRBNIuoWl8FUeRihI7wuZLDdXKIiKinOubl9NUlK90BHfSH9QAAU60JrcWtfXJeb+NzJYeIiKin7Fs87Gvsk3kyp/53qtP3XKfHMSw5REREFxA0MAgKjQLWViuaCly7xYM+X4/GfY0Q5ALi/hgHgCsuO4olh4iI6AIEmfDrJSsXj6qcWt0+ihN1eRRifh8DoP3yldVodel5vRFLDhERUTeEjWm/ZOXKUZXmE82oz64HBCDhpgQEJAVAFaGCzWSD7qDOZef1Viw5RERE3dAxktN0tAlmvdkl5yj5oAQAEJkRiYD4AAiC0Cflylux5BAREXWDOlKNgKSA9i0e9jU6/fitJa2o+bEGAJDw5wT746FjueKyo1hyiIiIusmVt5KXfFgCiED4pHAEXRT06zlHhwIC0FLYAmOd0enn9WY+V3K4GCARETmq41byhpwGpy7Q11bVhupN1QCAhJsTOj2n1CoRNLC99PCSVc/4XMnhYoBEROQobboWglKA8bQRhlLnbfFQ8lEJYGsfKdJcrDnreXu5YsnpEZ8rOURERI6S+8mhTdcCcN6t5MZaI6rWVwHoPBfnTPad0Pc2QLRxi4fuYskhIiLqAWff7VT6SSlEswjNUA20w7VdvkYzRAOZnwzmBjNaCluccl5fwJJDRETUAx2jKo37G2Ez9W6LB7POjMqvKwEAifMSIQhCl6+TKWUIGRkCgFs89ARLDhERUQ8EXhQIZagStjYbdId7t0Bf2edlsLXZEDQoyH6r+LnYR5B4K3m3seQQERH1gLMW6LM0W1C+phwAkHjzuUdxOnSUIN0hHawGbvHQHSw5REREPeSMBfrK15bD2mJFQFIAwieHX/D1/v39oe6nhmgW0ZjX6PB5fQlLDhERUQ+Fjm4vOc3Hm2FqMPX4/VaDFWWflQFo36NKkJ1/FAf4zQgSL1l1C0sOERFRD6nCVAga8MsCfXt7XjgqvqqARW+BX6wfoqZHdft99hEkrpfTLSw5REREDrCvXdPDwmEz2VD26RmjOPILj+J0CBkVAsiA1lOtaDvd1qPz+iKWHCIiIgecWXJ6ssVD1YYqmOpMUEeq0e93/Xp0TmWwEsGDg+3npfNjySEiInKAdpgWMrUMpjoTWoq6t0CfzWJr34gTQPwN8ZApe/5r2NmLEXoznys53KCTiIicQaaSIWRECIDuF47Tm0/DWG2EMlSJ6N9HO3TeTls8WLnFw/n4XMnhBp1EROQs9sLRjbudRKtoH8Xp/6f+kKvlDp1Tk6aBPFAOi96CpuNNDh3DV/hcySEiInKWjpKjy9PBajz/An0122pgKDVAEaxA7DWxDp9TkAsIHcW7rLqDJYeIiMhBAYkBUEWoYDPZoMs79xYPoiiiZHX7KE7cH+OgCFD06rw9GUHyZSw5REREDhIEAWFjLzwRuC67Di2FLZD7yxF3bVyvz9tRcvSH9bC0WHp9PG/FkkNERNQLF1ov58xRnNhrYqHUKHt9Tv9Yf/jH+UO0imjc39jr43krlhwiIqJeCB0dCghAS2ELjHXGs55v3NeIpoImyFQy9P9Tf+ed18HFCH0JSw4REVEvKLVKBA/6ZYG+LubInFp9CgAQ8/sYqMJUTjsvS86FseQQERH10rn2lNId0kG3XwdBIaD/Dc4bxQGAkJEhgAwwlBlgqDQ49djegiWHiIiolzot0Gf7dYG+jrk4/a7oB78oP6eeUxGogGaIpv28vMuqSyw5REREvaRJ00DuL4e50Yzmk80AgKZjTaj/uR6QAQk3JrjkvN25s8uXseQQERH1kkwpa798hF9HVUo+aB/FiZoeBf84f5ec1z6CtI9bPHSFJYeIiMgJzpwI3FLcgtpttQCAhJtcM4oDAMGDgqEIVsDaYoW+QO+y83gqlhwiIiIn6Jh8rDuoQ/F7xQCAiKkRCEwOdNk5ucXD+bHkEBEROYF/nD/8ov0gWkTUbv9lFOfPrhvF6XCuO7uIJYeIiMgpBEGwX7ICgNBxoQhODXb5ee1bPBToYWnmFg9nYskhIiJyko5RFQBIvDmxT87p188PAQkBgK19AjL9yudKTlZWFtLS0jB27FipoxARkZcJGxsGzVANon8fDe0wbZ+dl7uSd83nSk5mZiby8/ORk5MjdRQiIvIycn85Ri4bidR/pvbpeTtGkOpz6iGKvJW8g8+VHCIiIm8TMjwEgkKAsdoIQzm3eOjAkkNEROTh5P5y++UxXrL6FUsOERGRF+Cu5GdjySEiIvICHSWnMbcRNrNN4jTugSWHiIjICwQNCIIyRAmrwQp9Prd4AFhyiIiIvIIgExA6mpeszsSSQ0RE5CW4Xk5nLDlEREReoqPkNB1rgllnljiN9FhyiIiIvIQ6Qo3AlEBABBr2cjSHJYeIiMiL8FbyX7HkEBEReZEzS46vb/HAkkNERORFtOlayFQyGGuMaD3VKnUcSbHkEBEReRG5Wg5t+i9bPPj4JSuWHCIiIi/TsSs5Sw4RERF5FfsWD/sbYTP57hYPLDlEREReJjA5EKpwFWxGG3QHdVLHkQxLDhERkZcRBIG3koMlh4iIyCux5LDkEBEReaWOzTqbTzTDVG+SOI00WHKIiIi8kCpUhaCBQQB8d4sHlhwiIiIv5eu7krPkEBEReamO9XLq99T75BYPHl9yzGYznnjiCaxduxYvvfSS1HGIiIjchnaIFjI/GcwNZrQUtkgdp8+5ZckxGAzQ6bp3X/+KFSswYMAAzJ49G01NTdi5c6eL0xEREXkGmUqGkOEhAHzzLiu3Kjk2mw2rVq3CoEGDkJuba3+8qKgICxYswPLlyzF//nycOnXK/tyuXbswfPhwAMCIESOwYcOGPs9NRETkrjrm5dTn1EucpO+5Vcmpra3FtGnTUFZWZn/MZrNh1qxZmDt3Lu68807MmzcPN9xwg/35qqoqBAW1zx4PDg7G6dOn+zw3ERGRuwobFwYA0OXpYG2zSpymb7lVyYmKikJiYmKnx7777jucOHECU6dOBQBMnz4deXl5yMnJAQCEh4ejubkZANDc3IyIiIguj200GqHX6zt9EREReTv/eH+oo9QQzSJ0eb61xYNblZyuZGdnIyUlBUqlEgAgl8uRkpKCLVu2AACmTZuGgwcPAgDy8vJw2WWXdXmc5557Dlqt1v4VHx/fNz8AERGRhARBgHa4FgDQdKxJ4jR9y+1LTnV1NTQaTafHtFotysvLAQC33norCgoK8Omnn0Iul2P69OldHufhhx+GTqezf5WWlro8OxERkTuQ+8kBAKLVt24jV0gd4EKUSqV9FKeDzWaDzda+dbxCocC///3vCx5HrVZDrVa7JCMRERG5H7cfyYmJiTlr/oxOp0NcXJxEiYiIiMgTuH3JycjIQFFRkX2lRrPZjOLiYkybNk3iZEREROTO3K7kdFyG6jBx4kTExsZi+/btAIBt27YhKSkJ48aNc+j4WVlZSEtLw9ixY3udlYiIiNyXW83JqampwTvvvAMAWL16NaKjozF48GCsW7cOzz77LA4ePIjs7GysWbMGgiA4dI7MzExkZmZCr9dDq9U6Mz4RERG5EUH0xR27AHvJ0el0Z9295Qxbt251+jGJiIgccWzpMVR+VYnEWxKR9JekPjtvRkaG04/Zk9/fbne5ioiIiMgZWHKIiIjIK/lcyeHEYyIiIt/gcyUnMzMT+fn59r2viIiIyDv5XMkhIiIi38CSQ0RERF6JJYeIiIi8EksOEREReSW3WvG4L2RlZSErKwsWiwUAztr801laWlpcclwiIqKeMpgNaEMbDCZDn/5+csXv2I5jdmctY59d8bisrAzx8fFSxyAiIiIHlJaWon///ud9jc+WHJvNhoqKCgQHBzu8D9a56PV6xMfHo7S01CVbRlDX+LlLg5+7NPi59z1+5tL47ecuiiKampoQGxsLmez8s2587nJVB5lMdsEG2FsajYb/IUiAn7s0+LlLg5973+NnLo0zP/fubrDNicdERETklVhyiIiIyCux5LiAWq3Gk08+CbVaLXUUn8LPXRr83KXBz73v8TOXRm8+d5+deExERETejSM5RERE5JVYcoiIiMgrseQQERGRV2LJIa9iMBig0+mkjkFERC5QUVHRo9ez5DhZUVERFixYgOXLl2P+/Pk4deqU1JF8gs1mw6pVqzBo0CDk5uZKHccn/N///R9SU1Oh0Wjwxz/+EfX19VJH8hm5ubmYMmUKwsLCMGPGDNTW1kodyWe0trYiLS0NxcXFUkfxCaIoYtCgQRAEAYIg4Oabb+7R+1lynMhms2HWrFmYO3cu7rzzTsybNw833HCD1LF8Qm1tLaZNm4aysjKpo/iEwsJCfPPNN/jyyy+xatUqbN26FQ8++KDUsXxCW1sbvvjiC2zcuBGlpaVobW3F0qVLpY7lM5YtW4aCggKpY/iM9evX495770VOTg5ycnLw2Wef9ej9Prutgyt89913OHHiBKZOnQoAmD59OmbPno2cnByMHTtW4nTeLSoqSuoIPmXHjh1YtmwZVCoVhgwZgry8vB7/4UOO0el0eOKJJ6BSqQAAU6dOveD+PeQc69atw7Rp06SO4VPeeOMNXH311YiKikJCQkKP38//MpwoOzsbKSkpUCqVAAC5XI6UlBRs2bJF4mREzjV//nz7L1kA6Nevn0N/AFHP9evXz/7Zm0wmVFVV4f7775c4lfcrKSlBZWUlxo0bJ3UUn9HU1ASj0YjHHnsMycnJuOeee9DTpf1Ycpyourr6rE3btFotysvLJUpE1Df27duHu+66S+oYPuXbb7/FhAkTsGXLFhw+fFjqOF7NarXinXfewZ133il1FJ8SHByM77//HlVVVXj11Vfx5ptv4vXXX+/RMVhynEipVNpHcTrYbDbYbDaJEhG5XmVlJSwWC2bPni11FJ9yxRVX4PPPP8ekSZN6PBmTeiYrKwt33XUXLwtKRKlU4p577sFDDz2EDz/8sEfv5b8xJ4qJiYFer+/0mE6nQ1xcnESJiFzLarXi1VdfxbJly6SO4nM6Loe/9957qKmpQU1NjdSRvNayZcswYMAA+Pn5wc/PDwCQmpqKxYsXS5zMt1xzzTU9XiKEE4+dKCMjAy+88AJEUYQgCDCbzSguLuZENfJar7zyChYtWoSgoCAA7XNEzpyrQ64XEBCAiIgIhIaGSh3Fax0/frzT94Ig4OjRo0hKSpImkI+yWq1ITU3t0Xs4kuNEEydORGxsLLZv3w4A2LZtG5KSkjhRrY/wsmDfevXVVzFo0CA0NDTgyJEj+Pbbb7FhwwapY3m9uro6fPXVV/YJmD/++CPmzZsHhYJ/ZyXvsn37dqxevdr+//Xly5f3ePSM/1U4kUwmw7p16/Dss8/i4MGDyM7Oxpo1ayAIgtTRvF5NTQ3eeecdAMDq1asRHR2NwYMHS5zKe3366adYtGhRpzsdAgICUFVVJWEq31BUVITbb78dqampmDNnDoKCgvDvf/9b6lhETldaWor77rsPH330ESZMmID58+djypQpPTqGIPb0fiwiIiIiD8DLVUREROSVWHKIiIjIK7HkEBERkVdiySEiIiKvxJJDREREXoklh4iIiLwSSw4ReTSz2YwffvgBy5cv79H7DAaDixIRkbtgySEil1i/fj3mzp0LQRAgCALS09MxefJkDBw4EKNHj8aTTz6JxsbGXp1Dp9Ph6aefxowZM7q1cZ/RaMSLL76IqVOnXnBTy7a2NgwaNAh//vOfz3quvr4e999/PxYvXozIyEhcc801aGtrc/jnICLXYMkhIpeYOXOmfRVqANizZw927tyJo0eP4t5778Wzzz6L0aNH96roaLVaPPPMM93eBFetVuOOO+7AwYMHYbVaz/taURTP+Zrbb78dcXFxePHFF/Hpp5/CZDLBZDKhpaUFFRUVPf45iMg1WHKIyGW0Wq39nzs27pTJZPjLX/6C6667DoWFhXj33Xd7fR65XN7t14aEhCAkJOSCr/P398fJkyfxwQcfdHq8vLwca9euRUREBABg2rRpWL9+PTQaDRYuXIhjx471KDsRuQ5LDhFJ4qKLLgIAFBcXSxukh06dOoWudsN5+eWXnVLYiMh5WHKISBI5OTkAgBEjRnR6/PXXX8fs2bMxefJkXHzxxfj00087Pd/a2or7778f8+bNwwMPPIDHH38cJpOp02saGxtxzz334JVXXsG9994Lf39/rF279qwMu3btwvjx4xEQEIBx48bhyJEj9uesViu2bNmCp556yv7Yww8/jKeffhoAsGLFCtxyyy1YsmQJ9u3bZz/+kiVLcMstt+DkyZOOfjRE5CwiEZELARDP/KPm+PHj4oIFC0QA4pw5c0SLxWJ/7tFHHxXnzZsn2mw2URRFMTMzU5TJZOKPP/4oiqIo2mw28Xe/+534xBNP2N+TnZ0tAhAvvfRS+2P33XefuHTpUvv3b7/9trhmzRr794mJieLAgQPF++67TywuLhZ37twpBgYGildccYUoiqJYU1MjPvvss6Kfn5+YmJjY6efZsmWLCEBcuXJlp8dXrlwpAhC3bNniyMdERC7AkRwi6hNXX3014uPjMXDgQFgsFvz000/47LPP7PNpysrK8Pzzz+Phhx+GIAgAgJtvvhk2mw1vv/02AOCDDz7Azp078cADD9iPO2HCBMTGxnY618mTJ7Fp0yZYLBYAwLx58xAfH9/pNSEhIXjllVeQmJiISZMmYfr06di9ezcAICIiAo8++ihGjRrlmg+DiPqEQuoAROQbvvrqK7z22mu47777kJ+fj7Fjx3Z6fuPGjbBYLFiyZIm95FgsFgwfPhxKpRIA8PHHH+Oiiy5CYGBgp/d2PN/hxhtvxE033YRJkybhjTfewLhx4zB69OhOrwkICOj0fVhYGBoaGs57XCLyLCw5RNRnFi5ciK1bt2Lt2rV44IEHsHTpUvtzVVVVAIDly5dDrVZ3+f4TJ04gODj4gue58cYb0djYiH/84x+YMGEC7rrrLrz00ktnlSMi8m68XEVEfeq9995DYmIiXnnlFXzxxRf2x6OjowEABQUFZ73HaDTCaDRCq9We8+6mM5lMJtx99904fPgw5s6di7feeqvLRf2IyLux5BCRy3RVRkJDQ/HJJ59AqVTitttuw/HjxwEAY8aMAQA89thjMJvN9tdbLBY89NBDsNlsGDVqFGpqavDdd9+ddZ4zz/XSSy8BAJKTk/Hxxx9jwYIF2Lx5s9N/vjN1zC06MzsRSYslh4hcpra21v7PZ853GT9+PJ577jno9XrMmTMHLS0tSE9Pxx//+Ed88803mDx5Ml5++WUsW7YMl1xyCaZMmQJ/f3889NBD8Pf3x4IFC7Bt2zbU19fj7bffRl1dHfLz8/Hxxx+jra0NP/zwAw4cOGA/X0JCAiZNmmT/3mg0nrV3VWtrKwB02p7BYDCctV1DS0sLAKC5ubnT4x0Tmzdu3IhTp05hw4YNDn1mRORE0t7cRUTeav369eLMmTPtt5DPnj27023cNptNvPrqq0UA4ujRo8X3339fbGpqEhcsWCBGRESIQUFB4qRJk8T169d3Ou727dvF8ePHiyqVSkxOThZXr14tXnXVVeIDDzwg7t+/XxRFUbz00kvF8PBw8aGHHhKfeuop8eabbxYrKyvF1tZW8d///rcIQFQqleLSpUtFo9EorlixQgwNDRUBiPfcc49YXFwsvv7666JKpRIBiP/617/EyspK8auvvhJnzJghAhCHDBkirlq1SmxsbBRFURQtFos4c+ZMMSAgQLz++utFvV7fZ581EXVNEMULXNwmIiIi8kC8XEVEREReiSWHiIiIvBJLDhEREXkllhwiIiLySiw5RERE5JVYcoiIiMgrseQQERGRV2LJISIiIq/EkkNEREReiSWHiIiIvBJLDhEREXkllhwiIiLySiw5RERE5JX+PwI4nHpXCItKAAAAAElFTkSuQmCC",
319
+ "text/plain": [
320
+ "<Figure size 640x480 with 1 Axes>"
321
+ ]
322
+ },
323
+ "metadata": {},
324
+ "output_type": "display_data"
325
+ }
326
+ ],
327
+ "source": [
328
+ "plot_nz(df_test)"
329
+ ]
330
+ },
331
+ {
332
+ "cell_type": "code",
333
+ "execution_count": 68,
334
+ "id": "b8f71544-5a64-4d52-8f50-af5f7fa9929e",
335
+ "metadata": {
336
+ "tags": []
337
+ },
338
+ "outputs": [],
339
+ "source": [
340
+ "def plot_photoz(df, nbins,xvariable,metric, type_bin='bin'):\n",
341
+ " bin_edges = stats.mstats.mquantiles(df[xvariable].values, np.linspace(0.1,1,nbins))\n",
342
+ " ydata,xdata = [],[]\n",
343
+ " \n",
344
+ " \n",
345
+ " for k in range(len(bin_edges)-1):\n",
346
+ " edge_min = bin_edges[k]\n",
347
+ " edge_max = bin_edges[k+1]\n",
348
+ "\n",
349
+ " mean_mag = (edge_max + edge_min) / 2\n",
350
+ " \n",
351
+ " if type_bin=='bin':\n",
352
+ " df_plot = df[(df[xvariable] > edge_min) & (df[xvariable] < edge_max)]\n",
353
+ " elif type_bin=='cum':\n",
354
+ " df_plot = df[(df[xvariable] < edge_max)]\n",
355
+ " else:\n",
356
+ " raise ValueError(\"Only type_bin=='bin' for binned and 'cum' for cumulative are supported\")\n",
357
+ "\n",
358
+ "\n",
359
+ " xdata.append(mean_mag)\n",
360
+ " if metric=='sig68':\n",
361
+ " ydata.append(sigma68(df_plot.zwerr))\n",
362
+ " ylab=r'$\\sigma_{\\rm NMAD} [\\Delta z]$'\n",
363
+ " elif metric=='bias':\n",
364
+ " ydata.append(np.median(df_plot.zwerr))\n",
365
+ " ylab=r'Median $[\\Delta z]$'\n",
366
+ " elif metric=='nmad':\n",
367
+ " ydata.append(nmad(df_plot.zwerr))\n",
368
+ " ylab=r'$\\sigma_{\\rm NMAD} [\\Delta z]$'\n",
369
+ " elif metric=='outliers':\n",
370
+ " ydata.append(len(df_plot[np.abs(df_plot.zwerr)>0.15])/len(df_plot) *100)\n",
371
+ " ylab=r'$\\eta$ [%]'\n",
372
+ " \n",
373
+ " if xvariable=='VISmag':\n",
374
+ " xlab='VIS'\n",
375
+ " elif xvariable=='zs':\n",
376
+ " xlab=r'$z_{\\rm spec}$'\n",
377
+ " elif xvariable=='z':\n",
378
+ " xlab=r'$z$'\n",
379
+ "\n",
380
+ " plt.plot(xdata,ydata, ls = '-', marker = '.', color = 'navy',lw = 1, label = '')\n",
381
+ " plt.ylabel(f'{ylab}', fontsize = 18)\n",
382
+ " plt.xlabel(f'{xlab}', fontsize = 16)\n",
383
+ "\n",
384
+ " plt.xticks(fontsize = 14)\n",
385
+ " plt.yticks(fontsize = 14)\n",
386
+ "\n",
387
+ " plt.grid(False)\n",
388
+ " \n",
389
+ " plt.show()\n",
390
+ " "
391
+ ]
392
+ },
393
+ {
394
+ "cell_type": "code",
395
+ "execution_count": 71,
396
+ "id": "be87adb7-eb06-433a-8b2c-2cb0c1bb3ae3",
397
+ "metadata": {},
398
+ "outputs": [
399
+ {
400
+ "data": {
401
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG5CAYAAAA6ZcheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhOUlEQVR4nO3deVhU9f4H8PewDG6ACooii2yGmGBG4gYY4oK7mOauaQntZmWpWXjzplgubYpbqblmLqld0a7GogLqNQHFBQQElFxQBhEcgTm/P/gxOg4gjDOcgXm/nmee5/o953vO5xymZ973LN+vRBAEAURERESkN4zELoCIiIiIVDGgEREREekZBjQiIiIiPcOARkRERKRnGNCIiIiI9AwDGhEREZGeYUAjIiIi0jMmYhdAtadQKHD9+nWYm5tDIpGIXQ4RERHVgCAIuHfvHmxtbWFkVP01Mga0euj69euwt7cXuwwiIiLSQHZ2Nuzs7KpdhwGtHjI3NwdQ/ge2sLAQuRoiIiKqiYKCAtjb2yt/x6vDgFYPVdzWtLCwYEAjIiKqZ2ryeBJfEiAiIiLSMwxoRERERHqGAY2IiIhIzzCgEREREekZBjQiIiIiPcOARkRERKRnGNCIiIiI9AwDGhEREZGeYUDTAyUlJUhOTha7DCIiItITBjWTQGpqKsLCwtC+fXvk5uZCKpXi66+/fuqUC9u3b8e+ffvg5OSE5ORkjBo1ClOmTFFZRy6XY/HixcjNzYWFhQVSUlIwf/58+Pj4qG2vd+/eOH78uEpbbGzssx8gERERNQgGE9DS0tLQvXt3REREYPTo0QCAkJAQBAUFISoqCiYmlZ+KZcuWYenSpTh//jyaN2+Ou3fvwsPDA0VFRXjzzTcBAAqFAq+++ipKS0tx4MABAMCJEycQEBCA2NhYdO3aVbm948ePQ6FQ4MMPP1S2WVtbo3fv3ro6dCIiIqpvBAMxcOBAwcnJSaXtypUrAgBh1apVlfbJzs4WTE1NhbCwMJX2zz//XGjWrJlw8+ZNQRAEYfv27QIAISoqSmU9Pz8/wcfHR6Vt+PDhwoULF57pWGQymQBAkMlkz7SdymRny4SjR9OF7Gztb5uIiMiQ1eb32yCeQcvOzkZkZCT8/f1V2p2dneHg4IDVq1dX2m/Dhg0oKSlBnz59VNr79OmDwsJCbN26FQCwdu1aSKVS9OzZU229hIQEJCYmAgBSUlIQGRmJTz/9FEuXLkVGRoaWjlA71q8/A0fHFQgI2ARHxxVYv/6M2CUREREZJIMIaPHx8QAANzc3tWWurq44e/YsZDKZ2rK4uLhK+7m6ugIAoqOjIQgCEhIS4OjoCFNT0yrXA4CDBw+iVatW+P333/HRRx/B1dUVH330ERQKRbX1y+VyFBQUqHy0LSenADNmHIBCIQAAFAoBISEHkJOj/X0RERFR9QwioOXk5AAArKys1JZZW1sDQKVXs6rqV9EnPT0d+fn5KCwsrHbb6enpAIAPP/wQ2dnZuHXrFpYtWwZLS0ssXboUc+bMqbb+RYsWwdLSUvmxt7evdn1NpKbmKcNZhbIyAWlpd7S+LyIiIqqeQQS04uJiAIBUKlVbZmZmBgAoKiqqcb/H+2iybWtra3zwwQdISkqCs7Mzli9fjmvXrlVZ/5w5cyCTyZSf7OzsKtfVlJubFYyMJCptxsYSuLq21Pq+iIiIqHoGEdAqrmSVlJSoLatoa9WqVY37Pd5H020DgJ2dHZYtW4aSkhKcOVP1815mZmawsLBQ+WibnZ0F1qwZAmPj8pBmZCTB6tVDYGen/X0RERFR9QwioNna2gIA7txRv12Xl5cHAGjXrl2N+z3eRyqVwsrKqtbbrhAQEAAAePDgwVOPQ9emT++KzMyZeO45KwwY4ILp07s+vRMRERFpnUEENF9fX5iZmSEtLU1tWVpaGnx8fNCkSRO1ZYGBgcp1nuwDPApXgYGByMzMRGlpabXrVaYimLm4uNT0cHTKzs4CU6d2QXT0VRQVqV8VJCIiIt0ziIBmaWmJQYMGISYmRqU9KysLGRkZmDRpEoDytyVv3rypXP7KK6/A1NRUrV9UVBSkUinGjBkDABg/fjzkcjlOnjyptp63tzfc3d2rrO2PP/6Ap6enymC2Yhs1qiOKikpw6JB6oCUiIiLdM4iABgALFy5Ebm4u9u7dq2wLDw+Hh4cHpk2bBgAYNmwYHBwckJmZCaD8GbT58+cjIiJCObSFTCbD6tWrMXfuXLRsWf4A/dChQ9G3b18sWbJEue2EhAQcO3YM4eHhAIDk5GTY2tpi7NixyM3NVbZ999132LZtm64Pv1bc3KzQuXNr7N59UexSiIiIDJLBTPXk4eGB2NhYLFiwAMePH4dMJkNJSQmio6PRuHFjAOXPnFlbWyv/DQDz58+HtbU1pk6dCnd3d6SkpGDevHl46623lOtIJBLs378f8+bNw5QpU9C2bVucO3cOkZGRytubDg4O8PHxwcGDBxEdHY2BAwfC2dkZf/75Z6VDdIgtOLgjVqyIx8OHZZBKjcUuh4iIyKBIBEEQnr4a6ZOCggJYWlpCJpPp5I1OAEhOvgFPzwgcPDgBAwe66mQfREREhqQ2v98Gc4uTauf551vD1bUldu1KEbsUIiIig8OARpWSSCQYNaoj9u69hNLS6qeiIiIiIu1iQKMqBQd3xO3bRTh2LEvsUoiIiAwKAxpV6aWXbGFvb8HbnERERHWMAY2qJJFIEBzcEXv2XFSbSJ2IiIh0hwGNqhUc3BHXrt3DyZNVT+ZORERE2sWARtXq1cserVs35W1OIiKiOsSARtUyNjbCiBHPYffui+CQeURERHWDAY2eatQoD6Sn30Vi4g2xSyEiIjIIDGj0VC+/3B7NmzfC7t0XxC6FiIjIIDCg0VOZmhpj2LDnsGsXAxoREVFdYECjGhk1qiNSUm7h4sXbYpdCRETU4DGgUY306+eMpk1NeZuTiIioDjCgUY00bmyKwYM78DYnERFRHWBAoxoLDnbHmTO5yMzMF7sUIiKiBo0BjWps0CA3mJkZ8zYnERGRjjGgUY2Zm5thwABXBjQiIiIdY0CjWgkOdseJE9nIzb0ndilEREQNFgMa1crQoc/B2NgIe/ZcFLsUIiKiBosBjWqlZcvGePnl9rzNSUREpEMMaFRro0Z1RFRUJvLyisQuhYiIqEFiQKNaGzHCHQqFgH37LoldChERUYPEgEa1ZmPTDL17O3DQWiIiIh1hQCONjBrVEX/+mY6CArnYpRARETU4DGikkZEjO+LhwzL88cdlsUshIiJqcBjQSCMODpZ46SVb3uYkIiLSAQY00lhwcEccPJiGoqISsUshIiJqUBjQSGOjRnVEUVEJDh1KE7sUIiKiBoUBjTTm5maFzp1bY/duzipARESkTQxo9EyCgzti//5LePiwTOxSiIiIGgwGNHomo0Z1hEwmx5Ej6WKXQkRE1GAwoNEzef751nB1bcm5OYmIiLSIAY2eiUQiwahRHbF37yWUlirELoeIiKhBYECjZzZqVEfcvl2EY8eyxC6FiIioQWBAo2fm7W0Le3sL7NqVInYpREREDQIDGj0ziUSC4OCO2L37IhQKQexyiIiI6j0GNNKK4OCOuH79Hk6evCZ2KURERPUeAxppRa9e9mjduilvcxIREWkBAxpphbGxEUaOdMfu3RchCLzNSURE9CwY0EhrgoM7Ij39LhITb4hdChERUb3GgEZa8/LL7dG8eSPe5iQiInpGDGikNaamxhg27DlOnk5ERPSMTMQuoC6lpqYiLCwM7du3R25uLqRSKb7++muYm5tX22/79u3Yt28fnJyckJycjFGjRmHKlCkq68jlcixevBi5ubmwsLBASkoK5s+fDx8fH5X1cnNz8dlnn6FVq1aQyWSQyWRYtmwZ2rRpo/XjFcOoUR2xaVMiLl68DXd3a7HLISIiqpcMJqClpaWhe/fuiIiIwOjRowEAISEhCAoKQlRUFExMKj8Vy5Ytw9KlS3H+/Hk0b94cd+/ehYeHB4qKivDmm28CABQKBV599VWUlpbiwIEDAIATJ04gICAAsbGx6Nq1KwDg9u3b6N27N0JDQ/Hxxx8DABYtWgQ/Pz+cOnUKlpaWuj4NOtevnzOaNjXF7t0XMHeur9jlEBER1U+CgRg4cKDg5OSk0nblyhUBgLBq1apK+2RnZwumpqZCWFiYSvvnn38uNGvWTLh586YgCIKwfft2AYAQFRWlsp6fn5/g4+Oj/HdoaKjQpEkToaioSNlWWFgoNG7cWPjkk09qfCwymUwAIMhkshr3qUtjxuwUunZdLXYZREREeqU2v98G8QxadnY2IiMj4e/vr9Lu7OwMBwcHrF69utJ+GzZsQElJCfr06aPS3qdPHxQWFmLr1q0AgLVr10IqlaJnz55q6yUkJCAxMREPHz7Exo0b0a1bNzRu3Fi5TtOmTfHSSy9h/fr1KC0t1cLRim/UqI44cyYXmZn5YpdCRERULxlEQIuPjwcAuLm5qS1zdXXF2bNnIZPJ1JbFxcVV2s/V1RUAEB0dDUEQkJCQAEdHR5iamla5XmJiIoqLi6us4fbt20hJqfztR7lcjoKCApWPPgsKcoWZmTF2774gdilERET1kkEEtJycHACAlZWV2jJr6/IH2TMyMmrcr6JPeno68vPzUVhYWO2209PTa1RDenp6pfUvWrQIlpaWyo+9vX2l6+kLc3MzDBjgil27GNCIiIg0YRABrbi4GAAglUrVlpmZmQEAioqKatzv8T413bamNQDAnDlzlG98ymQyZGdnV7qePgkOdseJE9nIzb0ndilERET1jkEEtIorVCUlJWrLKtpatWpV436P96nptjWtASgPcBYWFioffTds2HMwMTHCnj0cE42IiKi2DCKg2draAgDu3LmjtiwvLw8A0K5duxr3e7yPVCqFlZXVU7etaQ31VYsWjREQ4MTn0IiIiDRgEAHN19cXZmZmSEtLU1uWlpYGHx8fNGnSRG1ZYGCgcp0n+wBAQECAcr3MzEy1tzAfX8/DwwO2trZV1mBrawt3d3cNjk5/BQe7IyoqE3l5ld+6JSIiosoZRECztLTEoEGDEBMTo9KelZWFjIwMTJo0CUD525I3b95ULn/llVdgamqq1i8qKgpSqRRjxowBAIwfPx5yuRwnT55UW8/b2xvu7u4wMjLCq6++ipMnT0IulyvXKS4uxsmTJzF+/HgYGTWsP8eIEe5QKAT8/vslsUshIiKqVxpWIqjGwoULkZubi7179yrbwsPD4eHhgWnTpgEAhg0bBgcHB2RmZgIofwZt/vz5iIiIUA5tIZPJsHr1asydOxctW7YEAAwdOhR9+/bFkiVLlNtOSEjAsWPHEB4ermz79NNP0bRpU6xatUrZ9sMPP6BZs2b46KOPdHXoorGxaYbevR2wZUsS/vorAzk5+j08CBERkb4wmKmePDw8EBsbiwULFuD48eOQyWQoKSlBdHS0cuBYW1tbWFtbqwwkO3/+fFhbW2Pq1Klwd3dHSkoK5s2bh7feeku5jkQiwf79+zFv3jxMmTIFbdu2xblz5xAZGam8DQoArVu3xokTJzBnzhzMnDkTCoUCN27cQFxcHGxsbOruZNShdu3MsX37eRw9mgkjIwnWrBmC6dO7il0WERGRXpMIgiCIXQTVTkFBASwtLSGTyfT6jc6cnAI4Oq6AQvHoK2ZsLEFm5kzY2elv3URERLpQm99vg7nFSXUvNTVPJZwBQFmZgLQ09TdZiYiI6BEGNNIZNzcrGBlJVNqMjSVwdW0pUkVERET1AwMa6YydnQXWrBkCyf9nNGNjCVavHsLbm0RERE9hMC8JkDimT++KRo1MMHHiHvz111T4+jqIXRIREZHe4xU00rnAQGcAwK1b90WuhIiIqH5gQCOds7FphtatmyIx8R+xSyEiIqoXGNCoTnh62iAp6ebTVyQiIiIGNKobnp6tkZR0Q+wyiIiI6gUGNKoTXl5tkJ5+F/fuyZ++MhERkYFjQKM64elZPpVVcjJvcxIRET0NAxrViY4drWFsLOFtTiIiohpgQKM6YWZmAnd3awY0IiKiGmBAozrj5dWGAY2IiKgGGNCozlS8yfnkBOpERESkigGN6oynpw3u3XuIq1fzxS6FiIhIrzGgUZ3x8moDALzNSURE9BQMaFRn2rZtBiurxgxoRERET8GARnVGIpHA09MGiYkMaERERNVhQKM6VT4nJwMaERFRdRjQqE55edkgLe0O7t9/KHYpREREeosBjeqUp6cNBAE4f/6W2KUQERHpLQY0qlMeHq1gZCRBYuI/YpdCRESktxjQqE41bmyKDh2s+BwaERFRNRjQqM55edkgKemm2GUQERHpLQY0qnMVb3IKAqd8IiIiqgwDGtU5T08b5Oc/QHZ2gdilEBER6SUGNKpznp42ADjlExERUVUY0KjO2dtboHnzRgxoREREVWBAozrHKZ+IiIiqx4BGovD0bM0raERERFVgQCNReHra4PLlPBQXl4hdChERkd5hQCNReHm1gUIhICWFUz4RERE9iQGNRNGpUytIJOBzaERERJVgQCNRNG0qhatrSz6HRkREVAkGNBJNxYwCREREpIoBjURTPicnp3wiIiJ6EgMaicbT0wZ5ecW4fv2e2KUQERHpFQY0Eg2nfCIiIqocAxqJxtGxOczNpQxoRERET2BAI9EYGUn+/0WBm2KXQkREpFcY0EhU5XNy/iN2GURERHqFAU1PnDlzRuwSROHpaYOLF29DLi8VuxQiIiK9YaJJp6ysLG3XARMTE9ja2mp9uxXkcjkWL16M3NxcWFhYICUlBfPnz4ePj89T+6ampiIsLAzt27dHbm4upFIpvv76a5ibm6us9+eff2LdunXo0KEDUlJS0KNHD3z44YeQSCQq661btw5vvPGGStv06dOxbt26Zz/QesbT0wZlZQIuXLiNLl3aiF0OERGRXtAooLVv314tdDyr9u3b48qVK1rdZgWFQoFXX30VpaWlOHDgAADgxIkTCAgIQGxsLLp27Vpl37S0NHTv3h0REREYPXo0ACAkJARBQUGIioqCiUn5Kdy1axemTJmC8+fPw9HREXK5HN26dcOtW7cQHh6uUsuaNWvw4YcfKtuMjIwQGhqqi0PXe507twZQ/iYnAxoREVE5iaDBKKFGRkaws7ODi4uLVoq4evUqACA9PV0r23vSjh07MHbsWERFRcHf31/Z7u/vD7lcjvj4+Cr7BgUF4dKlSyq1paenw8XFBatWrUJoaCiKiorg4OCAoUOH4ueff1au9/PPP+P1119HUlISOnXqBADYvXs3Tp8+ja+++krj4ykoKIClpSVkMhksLCw03o6+cHH5DiNGPIelSweIXQoREZHO1Ob3W+MraKmpqTA2NtaowCc9fPiwRrcaNbV27VpIpVL07NlTpb1Pnz7417/+hcTERHh5ean1y87ORmRkJKZOnarS7uzsDAcHB6xevRqhoaHYvXs38vLy0KdPH7XtKxQKrFu3DsuXLwcAhIeHo6SkBA8fPkRQUBACAgK0fjWyvuGbnERERKo0ekmgffv2WgtnACCVStGiRQutbe9xgiAgISEBjo6OMDU1VVnm6uoKAIiOjq60b8WVNTc3N7Vlrq6uOHv2LGQyGeLi4ipdr3379jAxMVFu/8qVK7hz5w4uXLiApUuXIjAwED4+PsjIyKj2GORyOQoKClQ+DYmnZ2uOhUZERPQYjQKaLuZO1NV8jPn5+SgsLISVlZXaMmtrawBV31rNyckBgGr7ZmRkVLmeRCJBy5Ytldt3cXFBamoqZDIZDh48iB49euDUqVPo379/taFr0aJFsLS0VH7s7e2fdtj1ipdXG9y8eR83bhSKXQoREZFe0Cigbd++Xdt16GSbAFBcXAyg/Crdk8zMzAAARUVFz9T3aes9uX2pVIqBAwfi2LFjCA0NRVpaGiIiIqo8hjlz5kAmkyk/2dnZVa5bH1VM+ZSYyKtoREREgIbPoNnY2FTafvDgQQQFBdVoGwqFAkZGj/JhVdusTFZWVpWh6klOTk4AgJKSErVlFW2tWrWqtG/FVbKn9X3aelVt38jICCtWrMCePXuQkJBQ5TGYmZkpA2FD5OzcAk2amCIp6Qb699fOiydERET1mUYBrSpDhw7FZ599hrCwsGrX+/DDD7Fp0yYcOXIEnp6etd7P5MmTq3xu7Em3bt2ClZUV7ty5o7YsLy8PANCuXbtK+1aMy/a0vtWtd/fu3WqP0czMDL169cKDBw+eciQNl5GRBJ078zk0IiKiClqdSUChUCAmJgaTJ09GYWHVzxONHDkSH3zwAfbs2aPRfqKioiAIQo0+1tbWCAwMRGZmJkpLVUerT0tLAwAEBARUuh9fX1+YmZkp13uyr4+PD5o0aYLAwECV7VXIysqCXC6vcvsVHjx4oLUhS+orLy8bBjQiIqL/p/Wpnvr06YO5c+di4sSJSE1NrXSd3r1749NPP8Xdu3e1vftKjR8/HnK5HCdPnlRpj4qKgre3N9zd3ZVtjz/fZWlpiUGDBiEmJkalX1ZWFjIyMjBp0iQAQGBgIFq1aqW2XlRUFAAo16vM3bt3kZCQgMmTJ2t0bA2Fp6cNUlJu4eHDMrFLISIiEp1O5uJ0d3fHhg0bEBYWhoMHD6otLysrw+uvv658dkvXhg4dir59+2LJkiXKtoSEBBw7dkxllP9t27bBwcEBixcvVrYtXLgQubm52Lt3r7ItPDwcHh4emDZtGoDyaaq++eYbbN++XRnwHj58iOXLl2Pq1KnKQWoDAwPh6emJQ4cOASgfPuP111/HvHnz4O3trbPjrw88PW1QUqLApUu3xS6FiIhIdFp9Bg14NFxG8+bNsXnzZsyfPx/JycmYPXs2gPKH5gcPHoyoqKinjv+lLRKJBPv378e8efMwZcoUtG3bFufOnUNkZKTK7ceWLVvC3Nxc5YUFDw8PxMbGYsGCBTh+/DhkMhlKSkoQHR2Nxo0bK9ebPHkymjRpgrfffhvPP/880tLSEBwcjLlz5yrXGTx4MJYvX45hw4Zh0KBBaNOmDT755BN069atTs6DPqt4kzMp6QY6d675CyNEREQNkUZTPVXFyMgIISEhWLVqlUr7zp07ERkZiR9++AE//fQT3n33XQQHB+O3337T1q4NSkOb6qlC+/Yr8OqrnRAe3k/sUoiIiLRO51M9VWXAgAHYu3cv+vfvj5EjRyrbR48ejeeeew7jxo3D9evXIZFI8Oabb2pz19QAeHracCw0IiIiaPkZtIMHDyIrK6vSkfc9PT2xfv16NGvWDAB0Ovcm1U/lc3IyoBEREWn9JQFTU1P4+flVuszKygp//vkn3n33XVy9elXbu6Z6zsvLBrm5hbh1677YpRAREYlKJ29xVsfY2BgrVqxQvtlIVOHxFwWIiIgMWZ0HtLi4OIwbN66ud0v1gKtrSzRqZMKARkREBq9OAlpJSQk2bdqEl156Cb1798avv/5aF7ulesbY2AjPP98aSUk3xS6FiIhIVFofB+1xubm5WLlyJdauXYtbt24BKB8nTSKR6HK3VI95edng77//EbsMIiIiUekkoJ04cQLfffcd9uzZg9LSUuXgtUZGRtDisGvUAHl62mDz5iSUlipgYlLnd+CJiIj0gtZ+AR8+fIiNGzfC29sbvr6+2LlzJ0pKSiAIAp577jksXbpUba5Koid5etpALi/D5ct5YpdCREQkmme+gnb9+nXlbczbt8vnURQEAVKpFMHBwQgJCYG/vz8A4NKlS8+6O2rgHn+T08OjlcjVEBERiUPjgHb8+HF899132Lt3r8ptTDc3N8yYMQNTp06tdMBaouq0bNkYdnYWSEq6gbFjnxe7HCIiIlHUOqD9/PPP+OGHH3D27FkAj66WjRgxAiEhIXj55Ze1XSMZGE75REREhq7WAe3ixYvIzs6GIAgwNjbGJ598gg8++IBXy0hrPD1bY/PmZLHLICIiEk2tXxIIDw9HTk4ONmzYAG9vb3z77beYM2cO/v77b13URwbI09MGOTkFuHOnWOxSiIiIRKHRW5xSqRSTJ09GXFwcoqOjoVAo4Ovri27duuHnn39GcTF/WElzXl5tAADJybzNSUREhumZh9no2rUr1q1bh2vXrmHcuHEIDw+Hra0t3nvvPVy4cEEbNZKB6dDBClKpMZ9DIyIig6W1cdAsLS3xwQcf4OLFi9ixYweys7Ph6ekJPz8/bN++HSUlJdraFTVwJiZG6NSpFefkJCIig6WTodr79++PPXv2ID09HX5+fvjggw/Qrl07/Pvf/9bF7qgB8vS0YUAjIiKDpdO5dOzt7bFw4UJkZ2fj22+/RWZmpi53Rw2Il5cNzp27ibIyhdilEBER1bk6mezQxMQE48aNQ0xMDJKSkhASElIXu6V6zNPTBsXFpUhLuyN2KURERHWuzmejfv7557Fy5cq63i3VM49P+URERGRoNApomzZt0nYdOtkm1V+tWjVFmzbNGNCIiMggaRTQNmzYoOUydLNNqt+8vGyQlHRT7DKIiIjqnEYBraysTNt16GSbVL+Vz8n5j9hlEBER1blaz8UJAImJiTh27BgcHByeuQBBEJCQkIDr168/87aoYfH0tMHXX5+ATPYAlpaNxC6HiIiozmgU0AoKCuDv76/VQhwdHbW6Par/Kl4USE6+id69n/3/DBAREdUXGgU0Pz8/SCQSrRbSpk0brW6P6j93d2uYmhohKekGAxoRERkUjQJaVFSUlssgUieVGqNjx1Z8Do2IiAxOnY+DRlQb5VM+8U1OIiIyLAxopNc8PVsjOfkGFApB7FKIiIjqDAMa6TUvrza4f78EGRl3xS6FiIiozjCgkV6reJMzMZEzChARkeFgQCO9ZmPTFK1aNeGUT0REZFAY0EivSSSS/39RgAGNiIgMBwMa6T0vLxve4iQiIoMiSkArKCgQY7dUT3l62iA9/S7u3ZOLXQoREVGdECWgff7552LsluqpihcFzp3jeGhERGQYNJpJoCq3bt3C9u3bkZGRAZlMBkFQH7vq1q1bOHz4MFasWKHNXVMD1rFjKxgbS5CUdAM9etiLXQ4REZHOaS2g7d27F+PHj4dcLq80mD1O2/N4UsPWqJEJ3N2t+RwaEREZDK0FtI8++gglJSUYPHgwOnXqhEaNGqmt8/DhQ6Snp2P37t3a2i0ZCL7JSUREhkRrAS03Nxffffcd3nzzzaeuO2vWLG3tlgyEp6cNDhy4DEEQeAWWiIgaPK29JPDCCy+ge/fuNVp3yZIl2tqt3nrw4IHYJTQoXl42uHfvIa5elYldChERkc5p7QranDlzsHPnTrzwwgtPXXf37t0YM2aMtnZdI3K5HIsXL0Zubi4sLCyQkpKC+fPnw8fH56l9U1NTERYWhvbt2yM3NxdSqRRff/01zM3N1dZNSkrC/Pnz0bVrV3zxxRdqyxUKBVauXInTp0/D1tYWiYmJePvttzFo0CCtHGdD9WjKp3/Qvn1zcYshIiLSMa0FtICAABw9ehSbN2+Gn59flevl5+fjm2++qdOAplAo8Oqrr6K0tBQHDhwAAJw4cQIBAQGIjY1F165dq+yblpaG7t27IyIiAqNHjwYAhISEICgoCFFRUTAxKT+Fcrkcv/32G3bt2oV9+/ZVGVRnzpyJ2NhYJCQkQCqVIj09HZ6entixYwcGDx6s5SNvOGxtzdGyZWMkJd3A8OHuYpdDRESkU1oLaM7Ozrh5Uz/Hqdq5cyd+//13REVFKdt69uwJb29vvPXWW4iPj6+y77vvvgtLS0tlOAOATz75BC4uLli3bh1CQ0MBAGZmZpgwYQK6deuGPXv2VLqthIQEfP/999iwYQOkUimA8vM2atQovPXWW0hNTVW2k6pHUz7p53eMiIhIm7T2DFq/fv0gCEKNPnVt7dq1kEql6Nmzp0p7nz59kJCQgMTExEr7ZWdnIzIyEv7+/irtzs7OcHBwwOrVq9X6mJqaVltHxX6frCMrKwsHDx6syeEYLC8vvslJRESGQWsBLSgoCL/88gsePnwIhUJR6aesrAxXr15VC0q6JAgCEhIS4OjoqBaeXF1dAQDR0dGV9q24subm5qa2zNXVFWfPnoVMVvOH1uPi4iCVSuHg4FCrOuRyOQoKClQ+hsjT0wapqXm4f/+h2KUQERHplNYC2oABA9CzZ0/lM1mVkUgksLe3x8KFC7W126fKz89HYWEhrKys1JZZW1sDANLT0yvtm5OTAwDV9s3IyKhxLTk5OWjZsqXaMBFPq2PRokWwtLRUfuztDXM0fU9PGwgCcP78LbFLISIi0imtBbSWLVvCycnpqett3boV2dnZ2trtUxUXFwNApc92mZmZAQCKioq03req7WmyrTlz5kAmkyk/dXn+9EmnTq1gZCThbU4iImrwtDoXJ1A+W0BeXh5KS0vVnjermElgy5YtmDhxosb7yMrKqnEwqgiNJSUlassq2lq1alVp34orW5r0rWp7mmzLzMxMGeIMWePGpujQwYoBTYtycgqQmpoHNzcr2NlZiF0OERH9P60FNLlcjtDQUGzduhWlpaXVrlvZ+GG1MXny5Cqf13rSrVu3YGVlhTt37qgty8vLAwC0a9eu0r62trYAoFHfqrZ37tw5rWzLUHl62nBOTi1Zv/4MZsw4AIVCgJGRBGvWDMH06VUPOUNERHVHa7c4582bh40bN8LMzAwODg6wtLSEra0tHBwc4ODgAHt7exgbG8PR0RHffffdM+0rKiqqxm+MWltbIzAwEJmZmWrBMS0tDUD5GG6V8fX1hZmZmXK9J/v6+PigSZMmNa47MDAQcrlc+WxbTeugRzw9WyMp6YYobwM3JDk5BcpwBgAKhYCQkAPIyTHMF1CIiPSN1gLazp07sXHjRhQUFCAjIwO//vorwsPDkZGRgYyMDGRmZiIvLw++vr4YPny4tnZbI+PHj4dcLsfJkydV2qOiouDt7Q1390cDnz7+fJelpSUGDRqEmJgYlX5ZWVnIyMjApEmTalXHuHHjAEBte1FRUbCxsUG/fv1qtT1D5Olpg/z8BwwSzyg1NU8ZziqUlQk4efKaSBUREdHjtBbQ2rZtqxJY+vbti927d6usY25ujokTJ2LRokXa2m2NDB06FH379lWZAzQhIQHHjh1DeHi4sm3btm1wcHDA4sWLlW0LFy5Ebm4u9u7dq2wLDw+Hh4cHpk2bpravwsJCAJU/t+bl5YVp06Zh+fLlyuVXr17Fjh07EB4eDmNj42c+1obOy6sNAPA5tGfUqlXTStvHj9+FWbMO4Z9/Cuu4IiIiepzWnkFr1KgRBEFQDiEhkUjQo0cPREREKEfbB8pD2s6dO1VCkK5JJBLs378f8+bNw5QpU9C2bVucO3cOkZGRKrcVW7ZsCXNzc9jY2CjbPDw8EBsbiwULFuD48eOQyWQoKSlBdHQ0GjdurLKf7du3Y/369QCAzZs3w8HBAYMHD4adnZ1ynTVr1mDRokWYOHEiXFxckJycjA0bNqjMVEBVs7e3gKWlGRITb2Dw4A5il1Nv/ec/qTA2Lv9vtaxMgLGxBMuXD8CdO8VYvjweq1adxptvemP27F5o06aZyNUSERkeiaClh3nefPNN/PPPP3B3d4e1tTU+/PBDFBYWws3NDTNmzMCoUaNw//59fPzxxzhz5kythqcgVQUFBbC0tIRMJoOFheG9eefn9zNsbc2xffsrYpdSL5WUlMHJ6Vv07++Cf/3rZaSl3YGra0vlW5z5+Q/w7bfxWL48HnJ5GUJDX8Ts2b3Qtu2zvdxDRGToavP7rbWAdvXqVXTt2hV3796FRCLB1atXYWdnh02bNmHq1Kkqg7N6e3sjISFBG7s1SIYe0N555z84ejQDKSlvi11KvbR1azImTNiNpKRQdO5sU+V6+fkP8N13CVi2LI5BjYhIC2rz+621Z9AcHR1x8uRJfPjhh/jmm2+Ut/UmT56M7777DhYWFhAEAfb29li5cqW2dksGyMvLBpcu5eHBg+qHcyF1giBg6dI49OvnXG04A4DmzRvh88/9kZk5E3Pm9MaGDYlwdv4OM2dGIjf3Xh1VTERkmLR2Be1pysrKcPfuXeXgr6Q5Q7+ClpCQg+7d1+P06Tfw4ou2YpdTr8TEXIW//wZERk7AgAGuteork1VcUYvHgwelCAl5EZ98witqREQ1JcoVtKcxNjZWhrPjx4/X1W6pAerUqTUkEr7JqYlly+Lg4dEK/fu71LqvpWUjzJ/vj8zM9zF3bm9s3JgIJ6dv8f77B3H9Oq+oERFpU50FtMdNmTJFjN1SA9GsmRQuLi0Z0GopNTUP+/ZdwqxZ3VWeCa2tx4PaZ5/5YdOmJDg7M6gREWlTrYfZSE5Oxp9//onRo0fD3t4eQPlzLYsWLXrqFE+lpaX4+++/kZGRoVm1RP/Py8sGSUk3xS6jXvn22wRYWzfBhAmeWtmepWUjfPaZH959txu+//4kli2Lw+rV/8OMGeW3Ptu1M7zb70RE2lLrZ9DatGmDW7duwdfXF1FRUcr2oKAgHD58GACqnIZHIpEox0orKyvTvGoDZ+jPoAHAv/4Vje++S8CtWx8/09UgQ3HnTjHs7Zdj9uye+OKLPjrZh0z2QBnUiopKGNSIiJ5Qm9/vWl9BGzp0KLZt24b+/furtI8fPx7x8fGYMmUKWrRoUWnfkpISnD17FgcPHqztbolUeHraIC+vGLm5hbC15UPqT7N69WmUlSnw5psv6WwfFVfU3nvPB99/n4ClS+OwZs3/8MYbXfHpp70Z1IiIakFrb3Hev38fH3zwAdasWfPUdZ2cnHib8xnwChqQnn4XLi7f4eDBCRg4sHZvIxqahw/L0L79Cgwe7Ia1a4fV2X4LCuTKoHb/fglmzGBQIyLDJspbnE2bNsWMGTOeul5ubi4++ugjbe2WDFT79s1hbi7liwI1sGPHOeTmFmLmzO51ul8LCzPMm+eHzMyZ+OILf2zdeg7Ozt/hnXf+w8nuiYieQqtvcXp7ez91na+//hpjx47V5m7JABkZSdC5sw0SExnQqiMIApYti8fAga7o1Km1KDVYWJhh7lxfZGS8jy++8Me2befg4sKgRkRUnVo/g7ZkyRI8ePBAo50VFhZi8+bN8PLy4lAb9Mw8PVvj2LFsscvQa1FRmTh79h8cPjxR7FKUQe3dd7vhhx9O4ptv4rB27Rm8/voL+PTT3rC3txS7RCIivVHrZ9CGDx+OAwcOAFB/W/Pxt+mqWzZs2DDs2bOn1sVSOT6DVm7VqlN4771IFBbOgZlZrf+/hkEYOnQbrl7NR2JiqN697XrvnlwZ1AoLHzKoEVGDp9O3OIcPH46EhARMmTIFTZo0UbYXFxdj6dKlCAoKQpcuXWBsbKzW99q1a4iJiUGvXr1qu1siNV5ebVBaqsCFC7fRpUsbscvRO5cu3caBA5fx88/D9S6cAYC5uRnmzPHFO+90w48/nsI335zAunV/Y/r0FzBnDoMaERm2Wge0QYMGIS0tDV999ZVK+yeffIIffvgBISEh1fb/5JNPlAPcEj2L558vf6YqKekGA1olVqyIh41NU4wb97zYpVTL3NwMn37aG2+//dJjQe0MXn+9K4MaERmsWr8k0KZNG7z33ntq7ceOHXtqOAOAUaNGYcmSJbXdLZEaCwszODk155uclbh9uwgbNybinXe61ZvbvxVBLSPjfXz55cv49dfzcHH5Dm++eQBZWTKxyyMiqlMavcXZpo361YrKbmlWJj8/HxcuXNBkt0RqPD1tGNAqsXr1aQgCEBr69Der9Y25uRk++aQ3MjNn4ssvX8bOnSlwdWVQIyLDorVhNoyNjfH3339Xu05ZWRkWL14Mc3OO/E7a4eXFoTaeJJeX4ocfTmHKFC9YWzd5egc91ayZVBnUFi4MwG+/XYCr63cIDT2Aq1fzxS6PiEintBbQZs+ejX79+uHHH39EYWGhyjJBELBv3z706tUL0dHRCAoK0tZuycB5etrg5s37uHGj8OkrG4ht287hn3/qfmBaXWnWTIrZs3shI+N9LFwYgF27LsDN7XsGNSJq0LQ21RMALF26FLNnz4apqSns7OzQpk0b5OXlITs7G8XFxRAEATY2Njh16hTs7Oy0tVuDw2E2HklNzUOHDj/g8OGJ6NfPRexyRCcIAry8IuDgYIkDB8aLXY5OFBY+xKpVp7BkyQnIZA/w2mtdMHeuLxwdm4tdGhFRtUSZ6gkAPvzwQxw9ehQvvvgi0tPTceLECVy6dAlFRUUAgKCgIMTFxTGckdY4O7dAkyamfA7t/x05koHk5JuYNauH2KXoTLNmUnz8cfkVtX//OwC7d1+Em9v3CAnZzytqRNRgaPUK2uOuXbuGs2fPKlNi165dYWtrq4tdGRxeQVPVvfs6dOhghU2bRopdiugGDdqC69fv4e+/Q/Ry7DNduH//IVatOo0lS47j7t1HV9Tat28udmlERCpEu4L2uLZt22Lw4MEYP348nJyccObMGV3tigwc3+Qsl5JyCwcPpmHWrB4GE84AoGlTKT76qCcyMt7HokV9sXdv+RW1GTP2IzMzX+zyiIg0otWAlp2djRkzZqBNmzZ47rnnlO0eHh44deoUfH19ce3aNW3ukgienjZISbmFkpIysUsR1YoV8WjbthnGjtXvgWl15fGgtnhxX/z++yW4uX2PN97Yh4yMu2KXR0RUK1oLaFevXkW3bt2wfv163Lx5E2Vlj34sJRIJFixYgO7du8PX1xf5+fna2i0RPD1tUFKiwC+/JCEnp0DsckRx69Z9bNpUPjCtVFqzMQkbqqZNpfjww55IT38Pixf3xb59l9Ghww8MakRUr2gtoH366ae4ffs2AgMD8fnnn8PKykptnc8//xzXrl3Dl19+qa3dEiEx8R8AwPTp++DouALr1xve7fRVq07D2NioXg5MqysVQS0j432Ehwcqg9rrrzOoEZH+09pLAm3atMGvv/4KPz8/AEBAQACOHj2qtp6TkxMkEgnS09O1sVuDxJcEHsnJKYCj4wooFI++xsbGEmRmzoSdnWGcmwcPSuHouAKvvNIRP/44WOxy9FZRUQkiIk4jPPw47twpxpQpXpg71xfOzi3ELo2IDIQoLwk4OTkpw1lVFAoF7t69i+vXr2trt2TgUlPzVMIZAJSVCUhLuyNSRXVv69Zk3Lp1H++/3zAGptWVJk1MMWtWD2RkvI8lSwJx4MBldOjwPaZP/x3p6byiRkT6RWsBzdra+qnrbN++HQUFBZXe/iTShJubFYyMVN9YNDaWwNW1pUgV1S1BELBsWRyGDn0OHTrwv6uaaNLEFB980APp6e/j66/74Y8/UhnUiEjvaC2gDRo0CO+99x5KSkoqXb5z507MmDEDEokEgwfzNgxph52dBdasGQJj40chrXdvB4O5vXn48BWcP38Ls2bx6lltPR7UvvmmvzKoTZv2O65cMZwrsESkn7T2DJpCocDo0aMRHx+PwMBAxMbGYsKECcjLy8Px48dx7tw5CIIAR0dHxMfHw8bGRhu7NUh8Bk1dTk4B0tLuIC4uG3PnHsXu3WMwcmRHscvSuQEDNuP27SKcPv2GQY19pgtFRSVYs+Z/CA8/jlu37mPyZC/Mm+cLFxfDuBpLRLpXm99vrc4kIAgCVqxYgW+++Qa5ubkqy0xMTBAcHIzly5ejbdu22tqlQWJAq5ogCAgO/hUxMVeRmBjaoK+knTt3E507r8LmzSMxYYKn2OU0GMXF5UFt8eLyoDZpUnlQM5Tb5kSkO6IFtAoKhQJJSUm4cuUKHj58iFatWuHFF19EixZ8W0obGNCql5dXBC+vCLi6tsSRI5NhbKyzCTNENX367zh06ArS0983+LHPdIFBjYi0Tedvcf7444/Vb9TICF26dMGoUaMwbtw4BAYGqoSziIgITXZLVCNWVk2weXMwYmKuYvHiY2KXoxM3bhRi8+ZkvPsuB6bVlcaNTfH++92Rnv4eli0bgEOH0uDu/gOmTt1rUG8JE5E4NApoS5Ys0XiHgiDg66+/1rg/UU306dMec+f64osvohAXly12OVq3cuUpmJgYYcaMF8UupcFr3NgU773ngytXyoPa4cNXGNSISOc0usVpZGSE0aNHw9/fH82aNatxv/v37+Po0aPYvXu3ylRQVDu8xVkzJSVl8PPbgH/+KcTZsyGwtGwkdklaUVxcAgeHFRg7thO+/36Q2OUYnOLiEqxbdwaLFh3DjRv3MXGiJz77zBdubhzmhIiqp/Nn0IyMjDR+Y0wQBEgkEga0Z8CAVnMZGXfRpctqDBrkhq1bgxvEm45r1/4PISEHcPnyu3weSkQPHpRi7dr/MagRUY3V2UwCgiDU+kNUl5ycWiAiYjC2bz+HjRsTxS7nmSkUApYvj8eIEe4MZyJr1MgE777rg/T097FixQD8+ecVuLv/iMmT9+Dy5TyxyyOiek6jK2ihoaHYsmULTExM8MYbb2Dq1Klo2rTpU/sVFRUhOjoa77zzDkpLSzUqmHgFTRNTp+7Fb7+l4MyZkHo94v7Bg6kYNGgrYmNfQ+/eDmKXQ4958KBUeevzn38KMWFCZ3z2mV+9/r4RkXbVyTAbMpkMa9euxcqVK5Gfn4833ngD7777Luzs7J7at0uXLjh79qwmuyUwoGni3j05unZdA0tLM5w4Mb3evvkYGLgJBQVyJCS83iBu1zZETwa18eM747PPfPHcc0+fDo+IGrY6ucVpaWmJjz76CGlpaVi/fj1OnjwJZ2dnjBkzBnFxcdX2DQ8P13S3RBoxNzfD9u2jkJR0A/PmHRG7HI0kJv6DI0cyMGtWD4YzPdaokQneeacbrlx5D999NxB//ZUBD4+VmDRpDy5dui12eURUTzzzCJ5GRkYYOXIk/vrrL5w+fRrm5ubo27cvunXrhm3btlX6MsCAAQOedbd678GDB7Va/8yZMzqqhCq8+KItvvqqL775Jg6HD18Ru5xaW748Hvb2Fhg1quFPYdUQNGpkgrff7oa0NNWgNnHibgY1InoqrQ6x7unpifXr1yM7OxsjRozAJ598AkdHR3z11Ve4c0fc8YLkcjkWLFiA0NBQzJ49G0OGDEFCQkKN+qampmLChAmYN28epk2bhtDQUNy7d6/SdZOSkjB8+PBqrxKuW7cOEolE5bNy5UqNjotqZ9asHujf3wWTJ+/BzZv3xS6nxnJz72Hr1mS8954PTE3r5+1ZQ/V4UPv++yBERWUqg9rFiwxqRFQ5nUz1VKGsrAy7du3CN998g/Pnz2PixImYOXMmOnas2ysACoUCwcHBKC0txYEDBwAAJ06cQL9+/RAbG4uuXbtW2TctLQ0+Pj6IiIjA6NGjAQAhISE4f/48oqKiYGJiAqA8AP7222/YtWsX9uzZgy+++AJhYWGV1tK9e3f4+fkp24yMjBAaGgpnZ+caHQ+fQXs2//xTCE/PVXjppXY4cGBcvbhd+NlnR/HttwnIzv4AzZs3jPHcDJVcXor16//GV1/F4vr1exg3rjPmz/eDuzufUSNq6Gr1+y3oUG5urjB37lyhRYsWgkQiEYyMjAQjIyNhyJAhutytmu3btwsAhKioKJV2Pz8/wcfHp9q+AwcOFJycnFTarly5IgAQVq1apbb+5cuXBQDCF198Uen2du3aJcyZM6d2B/AEmUwmABBkMtkzbceQ/fHHZQEIE1asiBO7lKe6f/+h0LJluPD++wfFLoW06MGDEmHlypOCnd0yQSIJE8aP3yVcuHBL7LKISIdq8/utk1mkz507h2nTpsHJyQmLFy+GTCYDALRo0QJz5szBunXrdLHbKq1duxZSqRQ9e/ZUae/Tpw8SEhKQmFj5+FjZ2dmIjIyEv7+/SruzszMcHBywevVqtT6mpqbV1hIeHo7IyEh89NFHOHLkCMeGE8mgQW54/30fzJ79X5w9+4/Y5VRr06ZE5Oc/wHvv+YhdCmmRmZkJ3nzzJaSlvYsffxyEmJir8PD4EePH78KFC7fELo+IRKbVgPbf//4XQUFB8PLywsaNGyGXyyEIApydnfHDDz8gOzsbCxcuhI2NjTZ3Wy1BEJCQkABHR0e18OTq6goAiI6OrrRvfHw8AMDNzU1tmaurK86ePasMnzVx5coV3LlzBxcuXMDSpUsRGBgIHx8fZGRkVNtPLpejoKBA5UPPLjw8EB07WmPcuF24f/+h2OVUqmJg2pEj3eHs3ELsckgHHg9qK1cOxrFjWejUaSWDGpGBe+aAVlpail9++QVdunTBgAEDcPjwYeWsAT179sSuXbtw+fJlvPXWW2jcuLE2aq6V/Px8FBYWwspKfbBIa+vyZz7S09Mr7ZuTkwMA1fZ9Wrh6nIuLC1JTUyGTyXDw4EH06NEDp06dQv/+/asNXYsWLYKlpaXyY29vX+N9UtXMzEywbdsoXL2ajw8+OCR2OZX6z39ScflyHmbN6iF2KaRjZmYmCA31RmqqalAbN24XUlIY1IgMjcYBraCgAEuWLIGTkxOmTp2K5ORk5Tybo0aNQlxcHI4dO4aRI0eqPYSdmpr6zIXXVHFxMQBAKpWqLTMzMwNQPsOBtvtWRyqVYuDAgTh27BhCQ0ORlpaGiIiIKtefM2cOZDKZ8pOdnV3rfVLlOnZshW+/HYi1a8/gt99SxC5HzbJlcfDxaYcePZ4+ADQ1DI8HtVWrBuP48Sw8/zyDGpGhMdGk0wcffICffvoJhYWFymeomjZtimnTpmHmzJlwcnKqtv+4ceNw+vRpTXYNAMjKyqpxMKqopaSkRG1ZRVurVq0q7VtxlUyTvjVhZGSEFStWYM+ePdUO+WFmZqYMhKR9r7/eFYcOXcEbb+xHt27t4OBgKXZJAIC//87FX39l4tdfX6kXb5qSdpmZmSAkxBtTp3bBhg1n8e9/x+L551dizJhOmD/fD506tRa7RCLSIY0C2rfffqv8wbC1tcW7776L0NBQWFo+/YftyJEjSEpK0mS3SpMnT67yubEn3bp1C1ZWVpWOw5aXVz6hcbt27Srta2trCwAa9a0pMzMz9OrVq9YD25L2SCQSrF07FF5eEZg4cTf++msKjI118v5MrSxbFg9HR0uMHMmBaQ1ZRVB77bUXlEGtc+dVDGpEDZzGv0IVz5kJgoDVq1fjhRdegLOzc5UfR0dHmJubo3///pXOLlAbUVFRKvuv7mNtbY3AwEBkZmaqTdCelpYGAAgICKh0P76+vjAzM1Ou92RfHx8fNGnS5JmOBSifdcDFxeWZt0Oaa9GiMbZsCcbx49n4979jxS4H164VYPv2c3j/fR+YmIgfFkl8UqkxZsx4Eamp7yIiYgji4nLQufMqjB37G86fvyl2eUSkZRpdQQOAefPmKQNMTZSWliIvL085mGtdGj9+PHbs2IGTJ0+qDLURFRUFb29vuLu7K9uys7OVD+FbWlpi0KBBiImJUdleVlYWMjIy8OGHHz5zbXfv3kVCQgIWLFjwzNuiZ+Pr64jPPvPFggXR6NvXCb16OYhWyw8/nETjxiaYPr3qQZTJMFUEtalTu2DjxkdX1EaP7oTPP+cVNaIGQ5OB1p577jlNugmCIAgKhUKwt7fXuL+m++zbt68wfPhwZVt8fLxgamoqHDlyRNm2detWAYCwaNEiZdv58+eFZs2aCXv27FG2vfXWW4KHh4dQVFSktq/k5GQBgDB37ly1ZX379hU6d+4sREZGCoIgCA8ePBCCg4OFZcuW1ep4OFCt7pSUlAm9eq0XHByWC3fvFotSw717cqF588XCrFmRouyf6he5vFRYs+a04Oi4XJBIwoQxY3YKyck3xC6LiCqh84Fqp0yZonEglEgkz9Rf033u378fzs7OmDJlCj799FN8+eWXiIyMVLm92bJlS5ibm6uM0+bh4YHY2Fhs3LgRH3/8MWbMmIGioiJER0erDRuyfft2fPDBBwCAzZs3Y/Xq1cqhOgBg8ODByM/Px7BhwzBy5EjMnDkTn3zyibIPic/ExAhbtgRDJnuAGTP2izKQ8MaNZ1FQIOfAtFQjUqkx3njjRVy+/C7WrBmKhISc/39GbSfOneOtT6L6SqdzcZJucC5O3fv11/N49dXfsG7d0Dq9zVhWpoC7+4/o2rUtdux4pc72Sw3Hw4dl2LQpEf/+dywyM/MxerQHPv/cH88/z1ufRGKrze83nz4mqsSYMZ0wbVoXvPdeJC5evF1n+z1w4DLS0u5g1qzudbZPalikUmO8/npXXL78DtatG4pTp67//zNqO5GcfEPs8oiohngFrR7iFbS6cf/+Q3TtugZNmpjit99GIytLBjc3K9jZ6e6c+/tvQGmpAsePT9PZPsiwlJSUX1FbuLD8itorr3jg88/90Llz3U25R0TleAWNSAuaNpVi+/ZRSE6+ATe37xEQsAmOjiuwfv0Znezv9OnriIm5yqtnpFWmpsaYPr38itr69cPwv/9dh6dnBF555VckJfGKGpG+YkAjqkarVk2hUAiouM6sUAgICTmAnBztT1i/fHk8nJyaY8QI96evTFRLpqbGmDbtBVy6VB7UzpzJhZcXgxqRvmJAI6pGamoennwIoKxMwOzZf+Lo0QzI5aWVd6yl7GwZduwoH5hWH2YxoIbr8aD200/D8Pff/8DLKwKjRv2KxMR/xC6PiP4ffwmIquHmZgUjI9V5MCUS4PDhK+jbdxNatlyCwYO34ttv43Hhwi2Nh+X4/vuTaNZMimnTXtBG2URPZWpqjNdeewEXL76Nn34ahrNn/0GXLqsZ1Ij0BAMaUTXs7CywZs0QGBuXhzRj4/J5O2/e/Bhnz4YgLMwfcnkpZs/+Lzw8VsLBYQWmT/8dv/56Hnl5RTXax717cqxZ8z/MmPEizM1rNjMHkbY8HtR+/nm4MqgFB+/A2bMMakRi4Vuc9RDf4qx7OTkFSEu7A1fXlpW+xVlUVIKYmKs4fPgKDh26gpSUW5BIAG9vW/Tv74L+/V3Qo4cdTE2N1bYbHn4MK1eeQmbmTNjbW9bVIRFVqqSkDFu2JGPhwhhcuXIXI0e64/PP/dGlSxuxSyOq92rz+82AVg8xoOm/nJwC/PnnFRw+nI4//7yCvLxiNGsmRUCAE/r3d0b//i6Ijr6KkJADUCjK/xOs60FxiapTWqrAli1J+PLL8qA2YoQ7vviCQY3oWTCgNXAMaPWLQiHgzJlcHD58BYcPX8Hx49koLVWorWdsLEFm5kydjrNGVFuVBbXPP/fDCy+0Fbs0onqH46AR6REjIwm8vW0xd64voqKm4s6d2fj3vwPU1isrE5CWdkeEComqZmJihClTuuDixXewceMInDt3E127rsGIEdvx99+5YpdH1GAxoBHVMXNzM0ye7KX2dqixsQSuri1FqoqoeiYmRpg82QsXLryNjRtH4Pz5WwxqRDrEgEYkgsreDl29eghvb5LeqyqoDR++HWfOMKgRaQufQauH+Axaw/G0t0OJ9F1pqQLbtiXjyy9jkJp6B8OGPYcvvvBH1658Ro3oSXxJoIFjQCMiffNkUBs6tAO++MIfL75oK3ZpRHqDLwkQEVGdMjExwqRJXkhJeRu//DISFy/ehrf3Wgwbtg3/+991scsjqncY0IiISGtMTIwwcaKnMqhdupQHb++1GDp0G06fZlAjqikGNCIi0rpHQe0tbN48Epcv5+GllxjUiGqKAY2IiHTG2NgIEyaoB7UhQ7bi1KlrYpdHpLcY0IiISOceD2pbtgQjLe0OunVbx6BGVAUGNCIiqjPGxkYYP74zzp9XDWqDB2/FyZMMakQVGNCIiKjOPR7Utm4NRnr6Xfj4MKgRVWBAIyIi0RgbG2HcuM44d+5NlaA2aNAWJCTkiF0ekWgY0IiISHSPB7Vt20YhMzMf3buvZ1Ajg8WARkREesPY2Ahjxz6P5GTVoBYUtAXx8QxqZDgY0IiISO88HtS2bx+Fq1fz0aMHgxoZDgY0IiLSW8bGRnj11UdBLStLhh491mPgwM2Ii8sWuzwinWFAIyIivfd4UNux4xVkZxegZ8+fGNSowWJAIyKiesPISIIxYzqpBbUBAxjUqGFhQCMionrn8aD266+v4Nq1R0HtxAkGNar/GNCIiKjeMjKSYPToTkhKehTUevX6Cf37/8KgRvUaAxoREdV7jwe1nTtHIze3UBnUjh/PErs8olpjQCMiogbDyEiCV17xQGJiqDKo9e79M/r1Y1Cj+oUBjYiIGpzHg9pvv43GjRuPgtqxYwxqpP8Y0IiIqMEyMpJg1CgPnD37KKj5+v6MwMBNDGqk1xjQiIiowXs8qO3aNQa3bhUpg1ps7FWxyyNSw4BGREQGw8hIguDgjvj77xBlUPPz24C+fRnUSL8woBERkcF5PKjt3j0Gt28/CmoxMQxqJD4GNCIiMlhGRhKMHPkoqOXlFcHffwMCAjYyqJGoGNCIiMjgVQS1M2dCsGfPq7hzp1gZ1KKjM8UujwwQAxoREdH/MzKSYMQId2VQu3v3Afr02YiXX2ZQo7rFgEZERPSER0FtBvbufRX5+Y+CWlRUptjlkQEwmIAml8uxYMEChIaGYvbs2RgyZAgSEhJq1Dc1NRUTJkzAvHnzMG3aNISGhuLevXsq6zx8+BBz5syBvb09mjRpgi5dumDLli1q21IoFPjhhx8wdepUzJ07F4MHD8Z//vMfrRwjERFpl0QiwfDhqkHt5Zc3ok+fDQxqpFMSQRAEsYvQNYVCgeDgYJSWluLAgQMAgBMnTqBfv36IjY1F165dq+yblpYGHx8fREREYPTo0QCAkJAQnD9/HlFRUTAxMQEAzJgxA1evXkWvXr1w/fp1bN68Gffv38fPP/+MqVOnKrf33nvvITY2FgkJCZBKpUhPT4enpyd27NiBwYMH1+h4CgoKYGlpCZlMBgsLCw3PChER1ZYgCNi37xLCwqJx9uw/8Pd3RFhYH/Tp017s0qgeqNXvt2AAtm/fLgAQoqKiVNr9/PwEHx+favsOHDhQcHJyUmm7cuWKAEBYtWqVIAiCcPbsWSE0NFRlnaSkJEEqlQoeHh7Ktvj4eAGAsGHDBpV1J0+eLDg4OAhyubxGxyOTyQQAgkwmq9H6RESkXQqFQvj994vCCy9ECECY4Of3s3D0aLqgUCjELo30WG1+vw3iFufatWshlUrRs2dPlfY+ffogISEBiYmJlfbLzs5GZGQk/P39VdqdnZ3h4OCA1atXAwASEhLw1VdfqazTuXNn+Pv7IzMzU6WOiv0+WUdWVhYOHjyoyeEREVEdk0gkGDbsOfzvfzPw++9jce+eHAEBm9Cnz0b89VcGhIZ/c4p0rMEHNEEQkJCQAEdHR5iamqosc3V1BQBER0dX2jc+Ph4A4ObmprbM1dUVZ8+ehUwmw4wZM9CiRQu1dSwtLdGhQwflv+Pi4iCVSuHg4FCrOoiISD89HtT27RuLwsKHCAjYBH//DTh6lEGNNNfgA1p+fj4KCwthZWWltsza2hoAkJ6eXmnfnJwcAKi2b0ZGRpX7TklJwbRp01S217JlS0gkklrVIZfLUVBQoPIhIiL9IZFIMHToczh9+g3s2zcW9++XoG9fBjXSXIMPaMXFxQAAqVSqtszMzAwAUFRUpPW+J0+ehImJCUJDQ1W2p8m2Fi1aBEtLS+XH3t6+0vWIiEhcjwe1/fvHoaioPKj5+W3AkSPpDGpUYyZiF6CJrKysKsPMk5ycnAAAJSUlassq2lq1alVp34orW7XtW1ZWhrCwMOzatUvltqq1tbVGdcyZMwezZs1S/rugoIAhjYhIj0kkEgwZ0gGDB7vhjz9SERYWhcDAX9C7twPCwvwREOCkdjeF6HH1MqBNnjy5xs9r3bp1C1ZWVrhz547asry8PABAu3btKu1ra2sLALXuO3v2bMyfP1/5bNnj2zt37lyt6zAzM1NeZSMiovrj8aD2n/+kIiwsGoGBv6BXL3uEhfVB374MalS5enmLMyoqCoIg1OhjbW2NwMBAZGZmorS0VGU7aWlpAICAgIBK9+Pr6wszMzPlek/29fHxQZMmTVTaFy1ahKCgIPTo0UOtT2BgIORyufLZtprWQURE9ZtEIsHgwR1w8uTrOHBgHOTyMvTr9wt8fX/Gf//LW5+krl4GtNoaP3485HI5Tp48qdIeFRUFb29vuLu7K9uys7OV/9vS0hKDBg1CTEyMSr+srCxkZGRg0qRJKu3Lly9Hx44dERgYqNK+Z88eAMC4ceMAQG17UVFRsLGxQb9+/TQ8QiIiqg8eD2p//DEeDx+WB7XevX/Gn39eYVAjJYOYSUAQBPTr1w/NmjXD3r17AZSPXebr64vIyEjllatt27Zh/PjxWLRoET799FMA5W9i+vj44JdffsGIESMAAG+//TaioqJw+vRpNG7cGACwcuVKbNq0CUOGDFHZ99WrV9GqVSvlOGnTp09HUlISTpw4AVNTU1y9ehUeHh5YuXIlpkyZUqPj4UwCREQNgyAIOHgwDWFhUTh16jp69rRHWJg/AgOdeeuzAarN77dBBDSg/A3KefPmIS8vD23btsW5c+cwa9YslduKhw4dwujRo/Htt9/itddeU7afPXsWCxYsgKurK2QyGUpKSvD1118rXyLYtm0bJkyYUOn/85FIJLh8+bLyebSysjIsWrQIycnJcHFxQXJyMiZPnqycRqomGNCIiBoWQRAQGZmGsLBonDx5DT162CEsrA/69WNQa0gY0Bo4BjQiooaJQa1hq83vt0E8g0ZERFQfSCQSBAW5IT5+Og4enACFQsCAAZvRs+dPOHQojc+oGRAGNCIiIj0jkUgwcKAr4uLKg5ogCBg4cAuDmgFhQCMiItJTjwe1yEgGNUPCgEZERKTnJBIJBgx4FNQAYODALejRYz0iIxnUGiIGNCIionqiIqidODENhw5N/P9n1hjUGiIGNCIionpGIpGgf38XZVAzMioPat27r8fBg6kMag0AAxoREVE9VRHUjh+fhsOHJ8LYWIJBg7YyqDUADGhERET1nEQiQb9+j4KaiYkRBg3aCh+fdfjPfxjU6iMGNCIiogaiIqgdO/Ya/vxzEkxNjTF4MINafcSARkRE1MBIJBIEBjorg5pUWh7UunVbhz/+uMygVg8woBERETVQFUEtNvY1/Pe/k2BmZowhQ7YxqNUDDGhEREQNnEQiQd++j4Jao0YmyqB24ACDmj5iQCMiIjIQFUEtJmYqjhyZjEaNTDB06Da89NJaBjU9w4BGRERkYCQSCQICnJRBrUkTU2VQ27//EoOaHmBAIyIiMlAVQS06eiqOHi0PasOGbYe3N4Oa2BjQiIiIDJxEIsHLLz8Kas2aSZVBbd8+BjUxMKARERERANWg9tdfU9CsmRTDh2/Hiy+uYVCrYwxoREREpKZPn/bKoGZhYaYMar//fpFBrQ4woBEREVGV+vRpj6ioR0FtxIgdDGp1gAGNiIiInurxoGZp2QgjRuxA165rsHcvg5ouMKARERFRjfXp0x5//TUFf/01Bc2bN8LIkQxqusCARkRERLVWEdSioqagRYvyoPbCC6uxZ88FKBQMas+KAY2IiIg05u/fHkePlge1li0bIzj4V3TtyqD2rBjQiIiI6JlVBLXo6KmwsmqC4OBf8cILq7F7N4OaJhjQiIiISGv8/Bxx5MhkREdPhbV1E4waxaCmCQY0IiIi0rqKoBYTMxWtWpUHtS5dIrBrVwqDWg0woBEREZHO+Po64r//LQ9qrVs3xSuv7GRQqwEGNCIiItK5iqAWG/sabGya4ZVXdsLLKwK//cagVhkGNCIiIqozvXs74M8/JyE29jW0adMMo0czqFWGAY2IiIjqXEVQO3bsNbRt+yio7dx5nkENDGhEREQkol69HHD48KOgNmbMb/D0XGXwQY0BjYiIiERXEdSOH5+Gdu0slEHt118NM6gxoBEREZHe6NnTHocOTVQGtVdfNcygxoBGREREeqciqJ04MQ12duVBrXPnVdix4xzKyhRil6dzDGhERESkt3r0sEdkZHlQs7e3wNixu+DpGdHggxoDGhEREem9iqAWFzcdDg6WGDt2Fzp3XoXt2xtmUGNAIyIionqje3c7HDw4AXFx0+Ho2BzjxjXMoMaARkRERPVORVCLj5+O9u3Lg9rzz6/Ctm3JDSKoMaARERFRveXjY4f//Kc8qDk5Ncf48bsbRFBjQCMiIqJ6ryKoJSS8DmfnFsqgtnVr/QxqDGhERETUYHTr1g5//DFeGdQmTNiNTp1W1rugxoCmJ86cOSN2CURERA3G40HN1bWlMqht2ZJUL4KawQQ0uVyOBQsWIDQ0FLNnz8aQIUOQkJBQo76pqamYMGEC5s2bh2nTpiE0NBT37t1TWefhw4eYM2cO7O3t0aRJE3Tp0gVbtmypdHvr1q2DRCJR+axcufKZj5GIiIhUdevWDgcOjMfJk+VBbeLEPfUiqEkEQWjw8yYoFAoEBwejtLQUBw4cAACcOHEC/fr1Q2xsLLp27Vpl37S0NPj4+CAiIgKjR48GAISEhOD8+fOIioqCiYkJAGDGjBm4evUqevXqhevXr2Pz5s24f/8+fv75Z0ydOlWllu7du8PPz0/ZZmRkhNDQUDg7O9foeAoKCmBpaQmZTAYLC4vang4iIiKDderUNfzrXzE4cOAyOnSwwvz5fhg79nmYmOj+mlVtfr8NIqDt2LEDY8eORVRUFPz9/ZXt/v7+kMvliI+Pr7JvUFAQLl26hPT0dGVbeno6XFxcsGrVKoSGhiIxMRERERFYtWqVcp3k5GR4e3vD1dUV58+fV7bv3r0bp0+fxldffaXx8TCgERERPZvTp69jwYLoSoNaTk4BUlPz4OZmBTs77f3O1ub32yBuca5duxZSqRQ9e/ZUae/Tpw8SEhKQmJhYab/s7GxERkaqhDoAcHZ2hoODA1avXg0ASEhIUAtcnTt3hr+/PzIzM1Xaw8PDERkZiY8++ghHjhyBAeRjIiIivePtbYv9+8fh1Kk38NxzVpg0aQ88PH7E66//DkfHFQgI2ARHxxVYv16cZ8QbfEATBAEJCQlwdHSEqampyjJXV1cAQHR0dKV9K66subm5qS1zdXXF2bNnIZPJMGPGDLRo0UJtHUtLS3To0EH57ytXruDOnTu4cOECli5disDAQPj4+CAjI0Pj4yMiIiLNeXvbYt++cTh9+g04Olpi/fqzUCjKL54oFAJCQg4gJ6egzutq8AEtPz8fhYWFsLKyUltmbW0NACq3Lx+Xk5MDANX2rS5cpaSkYNq0acp/u7i4IDU1FTKZDAcPHkSPHj1w6tQp9O/fHwUFVf/x5XI5CgoKVD5ERESkPS++aIu5c33V2svKBKSl3anzehp8QCsuLgYASKVStWVmZmYAgKKiIq33PXnyJExMTBAaGqq2TCqVYuDAgTh27BhCQ0ORlpaGiIiIKo9h0aJFsLS0VH7s7e2rXJeIiIg04+ZmBSMjiUqbsbEErq4t67wWkzrfoxZkZWVVGYye5OTkBAAoKSlRW1bR1qpVq0r7Vlwlq23fsrIyhIWFYdeuXWq3VR9nZGSEFStWYM+ePdUO+TFnzhzMmjVL+e+CggKGNCIiIi2zs7PAmjVDEBJyAGVlAoyNJVi9eohWXxSoqXoZ0CZPnlzlc2NPunXrFqysrHDnjvrlyby8PABAu3btKu1ra2sLALXuO3v2bMyfP1/5jFt1zMzM0KtXLzx48KDadSqu2BEREZHuTJ/eFQMGuCIt7Q5cXVuKEs6AehrQoqKiarV+YGAg9u7di9LSUuW4ZUD5GGcAEBAQUGk/X19fmJmZKdd7XMX4aE2aNFFpX7RoEYKCgtCjR48a1/fgwQO4uLjUeH0iIiLSHTs7C9GCWYUG/wwaAIwfPx5yuRwnT55UaY+KioK3tzfc3d2VbdnZ2cr/bWlpiUGDBiEmJkalX1ZWFjIyMjBp0iSV9uXLl6Njx44IDAxUad+zZ0+Vtd29excJCQmYPHlyrY+LiIiIGiaDCGhDhw5F3759sWTJEmVbQkICjh07hvDwcGXbtm3b4ODggMWLFyvbFi5ciNzcXOzdu1fZFh4eDg8PD5U3NFeuXIkdO3bg3LlzWLhwofLzxhtv4NSpUwDKr+R5enri0KFDAMrfznz99dcxb948eHt76+rwiYiIqJ6pl7c4a0sikWD//v2YN28epkyZgrZt2+LcuXOIjIxUub3ZsmVLmJubw8bGRtnm4eGB2NhYLFiwAMePH4dMJkNJSQmio6PRuHFjAOXB7p133lGOufbkvi9fvgwAGDx4MJYvX45hw4Zh0KBBaNOmDT755BN069atDs4CERER1RcGMdVTQ8OpnoiIiOofTvVEREREVI8xoBERERHpGQY0IiIiIj3DgEZERESkZxjQiIiIiPQMAxoRERGRnmFAIyIiItIzBjFQbUNTMXRdQUGByJUQERFRTVX8btdkCFoGtHro3r17AAB7e3uRKyEiIqLaunfvHiwtLatdhzMJ1EMKhQLXr1+Hubk5JBKJ2OU8k4KCAtjb2yM7O5uzIugYz3Xd4vmuOzzXdYvnW3OCIODevXuwtbWFkVH1T5nxClo9ZGRkBDs7O7HL0CoLCwv+h15HeK7rFs933eG5rls835p52pWzCnxJgIiIiEjPMKARERER6RkGNBKVmZkZvvjiC5iZmYldSoPHc123eL7rDs913eL5rht8SYCIiIhIz/AKGhEREZGeYUAjIiIi0jMMaFQvJCUlobS0VOwy6oUHDx6IXYJBedbzze82NVT8bj8bBjTSmdTUVEyYMAHz5s3DtGnTEBoaqpwFoTr//e9/IZFIVD6zZs2CiQmH7avOjRs3MHPmTIwYMaLGfbZv347x48dj3rx5GDZsGDZu3Ki7AhsYTc43v9ua2bhxIzp16oRGjRrB1dUV8+fPh1wuf2o/fr9rT9Nzze+29vHMkU6kpaWhe/fuiIiIwOjRowEAISEhCAoKQlRUVLX/0X7zzTeYOXMmjI2NAQASiQTjxo2rk7rrq0OHDuHIkSP49ttv4e/vX6M+y5Ytw9KlS3H+/Hk0b94cd+/ehYeHB4qKivDmm2/quOL6TZPzDfC7rYmtW7diyZIlCA4ORnFxMXbt2oWFCxciOzsbGzZsqLIfv9+1p+m5Bvjd1gmBSAcGDhwoODk5qbRduXJFACCsWrWqyn7/+9//hHHjxum6vAbL1tZW8Pf3f+p62dnZgqmpqRAWFqbS/vnnnwvNmjUTbt68qaMKG5aanm9B4HdbEyUlJUK/fv2E4uJiZVthYaHg5uYmAKjye8rvd+1peq4Fgd9tXeEtTtK67OxsREZGql1ZcHZ2hoODA1avXl1l3/DwcJw5cwbvvvsu9u3bh5KSEl2X26CYmprWaL0NGzagpKQEffr0UWnv06cPCgsLsXXrVh1U1/DU9HwD/G5r4u+//8ann36KRo0aKduaNm2KqVOnAgAyMzMr7cfvd+1peq4Bfrd1hQGNtC4+Ph4A4ObmprbM1dUVZ8+ehUwmU1t27949nDt3DteuXcMPP/yA4cOHo1OnTvj77791XrOhiYuLA6D+N3J1dQUAREdH13lNDRm/25p56aWXEBAQoNZuaWkJY2NjuLi4VNqP3+/a0/Rc87utOwxopHU5OTkAACsrK7Vl1tbWAICMjAy1Zebm5jh//jzy8/MRGxuLQYMGITU1Ff3790dWVpZuizYwVf2NKv4+6enpdV5TQ8bvtnalpKRg+PDhaNmyZaXL+f3Wnqeda363dYcBjbSuuLgYACCVStWWVUwNUlRUVGV/Y2Nj9O7dG3/88Qe++uor3L59G4sXL9ZNsQaqqr9RTf4+pDl+t5/d/fv38ccff+Cbb76pch1+v7WjJue6Ar/b2seARlpX8f9SK3sOoaKtVatWNdrWnDlz8MILLyAhIUF7BVKVf6Pa/n1Ic/xua+aLL77AsmXL4OTkVOU6/H5rR03OdWX43dYOBjTSOltbWwDAnTt31Jbl5eUBANq1a1fj7b388sscfFXLqvobafL3Ic3xu107W7duRfv27REcHFztevx+P7uanuuq8Lv97BjQSOt8fX1hZmaGtLQ0tWVpaWnw8fFBkyZNary9Bw8eVPmAKmkmMDAQANT+RhX/ruxhYdI+frdr7vDhw7h27Rreeeedp67L7/ezqc25rgq/28+OAY20ztLSEoMGDUJMTIxKe1ZWFjIyMjBp0iQAgFwux82bN6vdVklJCf7880/lq96kmSfP9SuvvAJTU1O1v1FUVBSkUinGjBlT1yU2KPxua1dMTAyOHTuGjz/+WKX9xIkTuHHjBr/fWlTbc10Zfre1ROyB2KhhOn/+vNCsWTNhz549yra33npL8PDwEIqKigRBEIT+/fsLZmZmQkZGhiAIgjBt2jTBxcVF2Lx5syAIglBWVia8/fbbwsyZM+u6/HrL2tpa6Nmzp1r7k+daEAThX//6l2Bvby/IZDJBEAQhPz9fsLW1VRvck6pW0/PN77bm4uPjBRcXF+HLL79U+Xz00UdCUFCQIAj8fmuLJuea323d4VRPpBMeHh6IjY3FggULcPz4cchkMpSUlCA6OhqNGzcGUP6ciLW1tfLfgYGBiImJwbRp07Bx40a0b98eo0ePRr9+/cQ8lHohOjoaO3fuxO3btyGTybB48WL0798fXbt2BaB+rgFg/vz5sLa2xtSpU+Hu7o6UlBTMmzcPb731lliHUW/U9nzzu62ZCxcuICgoCHfv3sX8+fPVlq9btw4Av9/aoOm55ndbdySCIAhiF0FEREREj/AZNCIiIiI9w4BGREREpGcY0IiIiIj0DAMaERERkZ5hQCMiIiLSMwxoRERERHqGAY2IiIhIzzCgEREREekZBjQiIiIiPcOARkRERKRnGNCIiIiI9AwDGhEREZGeYUAjIiIi0jMMaERERER6hgGNiEgPlJSUoFmzZpBIJCofExMTxMTEiF0eEdUxE7ELICIiICEhAT179sSYMWPQqFEjAMDRo0fh7u4OPz8/kasjorrGgEZEpAfu3LmDffv2KcNZZmYmjh07htmzZ4tcGRGJQSIIgiB2EURE9MiDBw/wxhtvYNWqVWjWrJnY5RCRCPgMGhGRnvn0008xf/58hjMiA8aARkSkRyIiIhAQEIAOHTqIXQoRiYgBjYhIT8TFxSEvLw/Dhg0TuxQiEhlfEiAi0gM3btzATz/9hNWrV4tdChHpAV5BIyISWWlpKV599VW0aNECubm5YpdDRHqAAY2ISGSzZ89GdHQ0vv76azz//PNITEwEAFy9ehX/+te/RK6OiMTAYTaIiESWkpKC1q1bY//+/QgPD0dJSQmOHz+O+Ph4vPbaa7h9+zaMjY3FLpOI6hADGhGRHlEoFNi7dy+io6PRunVr9O3bF927dxe7LCKqYwxoRERERHqGz6ARERER6RkGNCIiIiI9w4BGREREpGcY0IiIiIj0DAMaERERkZ5hQCMiIiLSMwxoRERERHqGAY2IiIhIzzCgEREREekZBjQiIiIiPcOARkRERKRn/g+KVQAse1NKxQAAAABJRU5ErkJggg==",
402
+ "text/plain": [
403
+ "<Figure size 640x480 with 1 Axes>"
404
+ ]
405
+ },
406
+ "metadata": {},
407
+ "output_type": "display_data"
408
+ }
409
+ ],
410
+ "source": [
411
+ "plot_photoz(df_test, 8,'z','bias', type_bin='bin')"
412
+ ]
413
+ },
414
+ {
415
+ "cell_type": "code",
416
+ "execution_count": 109,
417
+ "id": "d67d2991-0c55-4ec8-9c5c-8c5cc20364b1",
418
+ "metadata": {},
419
+ "outputs": [
420
+ {
421
+ "data": {
422
+ "text/plain": [
423
+ "0.04460718134171633"
424
+ ]
425
+ },
426
+ "execution_count": 109,
427
+ "metadata": {},
428
+ "output_type": "execute_result"
429
+ }
430
+ ],
431
+ "source": [
432
+ "nmad(df_test[df_test.VISmag<25].zwerr)"
433
+ ]
434
+ },
435
+ {
436
+ "cell_type": "code",
437
+ "execution_count": 110,
438
+ "id": "a7c59672-ff90-473b-8539-e28d9eaec4b7",
439
+ "metadata": {
440
+ "tags": []
441
+ },
442
+ "outputs": [],
443
+ "source": [
444
+ "df_test = df_test[df_test.VISmag<25]"
445
+ ]
446
+ },
447
+ {
448
+ "cell_type": "code",
449
+ "execution_count": 111,
450
+ "id": "81e8b270-0da6-41af-b43d-1912fa98ccaa",
451
+ "metadata": {
452
+ "tags": []
453
+ },
454
+ "outputs": [
455
+ {
456
+ "data": {
457
+ "text/plain": [
458
+ "0.13433240659117107"
459
+ ]
460
+ },
461
+ "execution_count": 111,
462
+ "metadata": {},
463
+ "output_type": "execute_result"
464
+ }
465
+ ],
466
+ "source": [
467
+ "len(df_test[np.abs(df_test.zwerr)>0.15])/len(df_test)"
468
+ ]
469
+ },
470
+ {
471
+ "cell_type": "code",
472
+ "execution_count": 112,
473
+ "id": "5c58a724-ecd8-48ed-89da-0e7eb9a5ca99",
474
+ "metadata": {
475
+ "tags": []
476
+ },
477
+ "outputs": [],
478
+ "source": [
479
+ "torch.save(insight.model.state_dict(),'/data/astro/scratch/lcabayol/Euclid/NNphotozs/models/insight_v0.pt')\n",
480
+ " \n",
481
+ " "
482
+ ]
483
+ },
484
+ {
485
+ "cell_type": "code",
486
+ "execution_count": 113,
487
+ "id": "c966fd40-3d3f-4df5-a988-c55a1ab2e204",
488
+ "metadata": {},
489
+ "outputs": [],
490
+ "source": [
491
+ "df_test.to_csv('/data/astro/scratch/lcabayol/Euclid/NNphotozs/results/df0.csv', sep=',')"
492
+ ]
493
+ },
494
+ {
495
+ "cell_type": "code",
496
+ "execution_count": 114,
497
+ "id": "f8487c14-3b26-4742-a5c0-e6a820400cc9",
498
+ "metadata": {},
499
+ "outputs": [
500
+ {
501
+ "name": "stderr",
502
+ "output_type": "stream",
503
+ "text": [
504
+ "/tmp/ipykernel_678/2146862925.py:13: FutureWarning: the 'line_terminator'' keyword is deprecated, use 'lineterminator' instead.\n",
505
+ " df_test.to_csv(f, header=True, index=False, line_terminator='\\n')\n"
506
+ ]
507
+ }
508
+ ],
509
+ "source": [
510
+ "# Create a list of additional header lines\n",
511
+ "header_lines = [\n",
512
+ " \"# Training spect-zs with a strict quality cut\",\n",
513
+ " \"#10 MDN components\",\n",
514
+ " \"# For 300 epochs with lr0=1e-3 + 100 epochs with lr=1e-4\",\n",
515
+ " \"# Date: 2023-07-26\",\n",
516
+ "]\n",
517
+ "\n",
518
+ "# Write DataFrame to a CSV file with custom header lines\n",
519
+ "with open('/data/astro/scratch/lcabayol/Euclid/NNphotozs/results/df0.csv', 'w') as f:\n",
520
+ " for line in header_lines:\n",
521
+ " f.write(line + '\\n')\n",
522
+ " df_test.to_csv(f, header=True, index=False, line_terminator='\\n')\n"
523
+ ]
524
+ },
525
+ {
526
+ "cell_type": "code",
527
+ "execution_count": null,
528
+ "id": "e20b30c3-00a8-4dd0-969d-0426121b99f5",
529
+ "metadata": {},
530
+ "outputs": [],
531
+ "source": []
532
+ },
533
+ {
534
+ "cell_type": "code",
535
+ "execution_count": null,
536
+ "id": "f9c0ad7d-7796-41b5-8b91-7c8dec41f17b",
537
+ "metadata": {},
538
+ "outputs": [],
539
+ "source": []
540
+ },
541
+ {
542
+ "cell_type": "code",
543
+ "execution_count": null,
544
+ "id": "60b50881-860c-48c1-80c3-f8a9ab51226f",
545
+ "metadata": {},
546
+ "outputs": [],
547
+ "source": []
548
+ },
549
+ {
550
+ "cell_type": "code",
551
+ "execution_count": null,
552
+ "id": "c174cd6f-340e-4986-a04d-6318ce11e067",
553
+ "metadata": {},
554
+ "outputs": [],
555
+ "source": []
556
+ }
557
+ ],
558
+ "metadata": {
559
+ "kernelspec": {
560
+ "display_name": "DESIenv6",
561
+ "language": "python",
562
+ "name": "desienv6"
563
+ },
564
+ "language_info": {
565
+ "codemirror_mode": {
566
+ "name": "ipython",
567
+ "version": 3
568
+ },
569
+ "file_extension": ".py",
570
+ "mimetype": "text/x-python",
571
+ "name": "python",
572
+ "nbconvert_exporter": "python",
573
+ "pygments_lexer": "ipython3",
574
+ "version": "3.10.9"
575
+ }
576
+ },
577
+ "nbformat": 4,
578
+ "nbformat_minor": 5
579
+ }
notebooks/insight.pt ADDED
Binary file (28.4 kB). View file
 
notebooks/match_catalogues.ipynb ADDED
@@ -0,0 +1,1126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 10,
6
+ "id": "0bd364f7-e6cf-4bd5-906e-2a096ad22ec1",
7
+ "metadata": {
8
+ "tags": []
9
+ },
10
+ "outputs": [],
11
+ "source": [
12
+ "import pandas as pd\n",
13
+ "from astropy.io import fits\n",
14
+ "from astropy.table import Table\n",
15
+ "import numpy as np\n",
16
+ "\n",
17
+ "import os"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": 11,
23
+ "id": "cd8362c5-87b5-4b69-bb4b-608d605c2028",
24
+ "metadata": {
25
+ "tags": []
26
+ },
27
+ "outputs": [],
28
+ "source": [
29
+ "path = '/data/astro/scratch/lcabayol/Euclid/NNphotozs/Euclid_EXT_MER_PHZ_DC2_v1.5'\n",
30
+ "filename_calib='euclid_cosmos_DC2_S1_v2.1_calib_clean.fits'\n",
31
+ "filename_valid='euclid_cosmos_DC2_S1_v2.1_valid.fits'"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": 12,
37
+ "id": "db81717b-09c9-473e-b7c3-488ad3f63b90",
38
+ "metadata": {
39
+ "tags": []
40
+ },
41
+ "outputs": [],
42
+ "source": [
43
+ "hdu_list = fits.open(os.path.join(path,filename_calib))\n",
44
+ "cat_calib = Table(hdu_list[1].data).to_pandas()\n",
45
+ "\n",
46
+ "hdu_list = fits.open(os.path.join(path,filename_valid))\n",
47
+ "cat_valid = Table(hdu_list[1].data).to_pandas()"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": 13,
53
+ "id": "066de14f-db52-4419-93e3-4645901bb216",
54
+ "metadata": {
55
+ "tags": []
56
+ },
57
+ "outputs": [],
58
+ "source": [
59
+ "hdu_list = fits.open('/data/astro/scratch/lcabayol/Euclid/NNphotozs/euclid_cosmos_DC2_S2_v2.1_full.fits')\n",
60
+ "cat_all = Table(hdu_list[1].data).to_pandas()\n",
61
+ "\n",
62
+ "\n"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": 23,
68
+ "id": "77924201-557e-4174-b040-2e2c6e309fc7",
69
+ "metadata": {
70
+ "tags": []
71
+ },
72
+ "outputs": [
73
+ {
74
+ "data": {
75
+ "text/html": [
76
+ "<div>\n",
77
+ "<style scoped>\n",
78
+ " .dataframe tbody tr th:only-of-type {\n",
79
+ " vertical-align: middle;\n",
80
+ " }\n",
81
+ "\n",
82
+ " .dataframe tbody tr th {\n",
83
+ " vertical-align: top;\n",
84
+ " }\n",
85
+ "\n",
86
+ " .dataframe thead th {\n",
87
+ " text-align: right;\n",
88
+ " }\n",
89
+ "</style>\n",
90
+ "<table border=\"1\" class=\"dataframe\">\n",
91
+ " <thead>\n",
92
+ " <tr style=\"text-align: right;\">\n",
93
+ " <th></th>\n",
94
+ " <th>ID</th>\n",
95
+ " <th>RA</th>\n",
96
+ " <th>DEC</th>\n",
97
+ " <th>FLUX_G_1</th>\n",
98
+ " <th>FLUX_G_2</th>\n",
99
+ " <th>FLUX_G_3</th>\n",
100
+ " <th>FLUX_R_1</th>\n",
101
+ " <th>FLUX_R_2</th>\n",
102
+ " <th>FLUX_R_3</th>\n",
103
+ " <th>FLUX_I_1</th>\n",
104
+ " <th>...</th>\n",
105
+ " <th>mu_class_L07</th>\n",
106
+ " <th>photo_z_L15</th>\n",
107
+ " <th>z_spec_S15</th>\n",
108
+ " <th>Q_f_S15</th>\n",
109
+ " <th>Instr_S15</th>\n",
110
+ " <th>reliable_S15</th>\n",
111
+ " <th>flag_X_ray_s15</th>\n",
112
+ " <th>flag_IRAC_s15</th>\n",
113
+ " <th>STAR</th>\n",
114
+ " <th>AGN</th>\n",
115
+ " </tr>\n",
116
+ " </thead>\n",
117
+ " <tbody>\n",
118
+ " <tr>\n",
119
+ " <th>391281</th>\n",
120
+ " <td>391282</td>\n",
121
+ " <td>149.553146</td>\n",
122
+ " <td>2.735168</td>\n",
123
+ " <td>3.187</td>\n",
124
+ " <td>3.208</td>\n",
125
+ " <td>3.167</td>\n",
126
+ " <td>8.187</td>\n",
127
+ " <td>8.348</td>\n",
128
+ " <td>8.272</td>\n",
129
+ " <td>12.89</td>\n",
130
+ " <td>...</td>\n",
131
+ " <td>-99</td>\n",
132
+ " <td>0.322</td>\n",
133
+ " <td>0.299501</td>\n",
134
+ " <td>2.0</td>\n",
135
+ " <td>PRIMUS</td>\n",
136
+ " <td>-99</td>\n",
137
+ " <td>0</td>\n",
138
+ " <td>0</td>\n",
139
+ " <td>0</td>\n",
140
+ " <td>0</td>\n",
141
+ " </tr>\n",
142
+ " </tbody>\n",
143
+ "</table>\n",
144
+ "<p>1 rows × 123 columns</p>\n",
145
+ "</div>"
146
+ ],
147
+ "text/plain": [
148
+ " ID RA DEC FLUX_G_1 FLUX_G_2 FLUX_G_3 FLUX_R_1 \\\n",
149
+ "391281 391282 149.553146 2.735168 3.187 3.208 3.167 8.187 \n",
150
+ "\n",
151
+ " FLUX_R_2 FLUX_R_3 FLUX_I_1 ... mu_class_L07 photo_z_L15 \\\n",
152
+ "391281 8.348 8.272 12.89 ... -99 0.322 \n",
153
+ "\n",
154
+ " z_spec_S15 Q_f_S15 Instr_S15 reliable_S15 flag_X_ray_s15 \\\n",
155
+ "391281 0.299501 2.0 PRIMUS -99 0 \n",
156
+ "\n",
157
+ " flag_IRAC_s15 STAR AGN \n",
158
+ "391281 0 0 0 \n",
159
+ "\n",
160
+ "[1 rows x 123 columns]"
161
+ ]
162
+ },
163
+ "execution_count": 23,
164
+ "metadata": {},
165
+ "output_type": "execute_result"
166
+ }
167
+ ],
168
+ "source": [
169
+ "cat_all[(cat_all.RA==149.553146)&(cat_all.DEC==2.735168)]"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": 24,
175
+ "id": "34596af4-352c-4e7b-bce9-0724a67c5edb",
176
+ "metadata": {
177
+ "tags": []
178
+ },
179
+ "outputs": [],
180
+ "source": [
181
+ "df_ra_dec = cat_all[['RA', 'DEC']].values\n",
182
+ "ra_dec_pairs = cat_valid[['RA', 'DEC']].values"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": 25,
188
+ "id": "b7c1f725-b0b3-4480-ab69-7b811727b027",
189
+ "metadata": {
190
+ "tags": []
191
+ },
192
+ "outputs": [],
193
+ "source": [
194
+ "# Find the common rows using numpy's isin() function\n",
195
+ "common_rows = np.isin(df_ra_dec, ra_dec_pairs).all(axis=1)"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": 27,
201
+ "id": "ce02f1f7-4cf8-49d1-81ef-0b1c90338e12",
202
+ "metadata": {
203
+ "tags": []
204
+ },
205
+ "outputs": [],
206
+ "source": [
207
+ "# Filter the dataframe based on matching RA, DEC pairs\n",
208
+ "cat_valid_match = cat_all[common_rows]"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": 38,
214
+ "id": "4891c5be-d1f9-4dbc-84e2-c05638ce5182",
215
+ "metadata": {
216
+ "tags": []
217
+ },
218
+ "outputs": [
219
+ {
220
+ "data": {
221
+ "text/html": [
222
+ "<div>\n",
223
+ "<style scoped>\n",
224
+ " .dataframe tbody tr th:only-of-type {\n",
225
+ " vertical-align: middle;\n",
226
+ " }\n",
227
+ "\n",
228
+ " .dataframe tbody tr th {\n",
229
+ " vertical-align: top;\n",
230
+ " }\n",
231
+ "\n",
232
+ " .dataframe thead th {\n",
233
+ " text-align: right;\n",
234
+ " }\n",
235
+ "</style>\n",
236
+ "<table border=\"1\" class=\"dataframe\">\n",
237
+ " <thead>\n",
238
+ " <tr style=\"text-align: right;\">\n",
239
+ " <th></th>\n",
240
+ " <th>ID</th>\n",
241
+ " <th>RA</th>\n",
242
+ " <th>DEC</th>\n",
243
+ " <th>FLUX_G_1</th>\n",
244
+ " <th>FLUX_G_2</th>\n",
245
+ " <th>FLUX_G_3</th>\n",
246
+ " <th>FLUX_R_1</th>\n",
247
+ " <th>FLUX_R_2</th>\n",
248
+ " <th>FLUX_R_3</th>\n",
249
+ " <th>FLUX_I_1</th>\n",
250
+ " <th>...</th>\n",
251
+ " <th>mu_class_L07</th>\n",
252
+ " <th>photo_z_L15</th>\n",
253
+ " <th>z_spec_S15</th>\n",
254
+ " <th>Q_f_S15</th>\n",
255
+ " <th>Instr_S15</th>\n",
256
+ " <th>reliable_S15</th>\n",
257
+ " <th>flag_X_ray_s15</th>\n",
258
+ " <th>flag_IRAC_s15</th>\n",
259
+ " <th>STAR</th>\n",
260
+ " <th>AGN</th>\n",
261
+ " </tr>\n",
262
+ " </thead>\n",
263
+ " <tbody>\n",
264
+ " <tr>\n",
265
+ " <th>368</th>\n",
266
+ " <td>369</td>\n",
267
+ " <td>149.862381</td>\n",
268
+ " <td>1.624455</td>\n",
269
+ " <td>0.4753</td>\n",
270
+ " <td>0.4252</td>\n",
271
+ " <td>0.4659</td>\n",
272
+ " <td>1.507</td>\n",
273
+ " <td>1.374</td>\n",
274
+ " <td>1.2680</td>\n",
275
+ " <td>3.983</td>\n",
276
+ " <td>...</td>\n",
277
+ " <td>1</td>\n",
278
+ " <td>1.189000</td>\n",
279
+ " <td>1.279900</td>\n",
280
+ " <td>1.5</td>\n",
281
+ " <td>zBRIGHT</td>\n",
282
+ " <td>-99</td>\n",
283
+ " <td>0</td>\n",
284
+ " <td>0</td>\n",
285
+ " <td>0</td>\n",
286
+ " <td>0</td>\n",
287
+ " </tr>\n",
288
+ " <tr>\n",
289
+ " <th>614</th>\n",
290
+ " <td>615</td>\n",
291
+ " <td>149.967209</td>\n",
292
+ " <td>1.625431</td>\n",
293
+ " <td>1.3970</td>\n",
294
+ " <td>1.3210</td>\n",
295
+ " <td>1.2990</td>\n",
296
+ " <td>3.310</td>\n",
297
+ " <td>3.165</td>\n",
298
+ " <td>2.8200</td>\n",
299
+ " <td>3.815</td>\n",
300
+ " <td>...</td>\n",
301
+ " <td>1</td>\n",
302
+ " <td>0.499900</td>\n",
303
+ " <td>0.498300</td>\n",
304
+ " <td>2.5</td>\n",
305
+ " <td>zBRIGHT</td>\n",
306
+ " <td>-99</td>\n",
307
+ " <td>0</td>\n",
308
+ " <td>0</td>\n",
309
+ " <td>0</td>\n",
310
+ " <td>0</td>\n",
311
+ " </tr>\n",
312
+ " <tr>\n",
313
+ " <th>863</th>\n",
314
+ " <td>864</td>\n",
315
+ " <td>150.029968</td>\n",
316
+ " <td>1.625488</td>\n",
317
+ " <td>1.8440</td>\n",
318
+ " <td>1.5770</td>\n",
319
+ " <td>1.5760</td>\n",
320
+ " <td>3.141</td>\n",
321
+ " <td>3.037</td>\n",
322
+ " <td>2.9770</td>\n",
323
+ " <td>6.058</td>\n",
324
+ " <td>...</td>\n",
325
+ " <td>1</td>\n",
326
+ " <td>0.818700</td>\n",
327
+ " <td>0.838300</td>\n",
328
+ " <td>2.5</td>\n",
329
+ " <td>zBRIGHT</td>\n",
330
+ " <td>-99</td>\n",
331
+ " <td>0</td>\n",
332
+ " <td>0</td>\n",
333
+ " <td>0</td>\n",
334
+ " <td>0</td>\n",
335
+ " </tr>\n",
336
+ " <tr>\n",
337
+ " <th>951</th>\n",
338
+ " <td>952</td>\n",
339
+ " <td>149.713226</td>\n",
340
+ " <td>1.625920</td>\n",
341
+ " <td>2.3280</td>\n",
342
+ " <td>2.3360</td>\n",
343
+ " <td>2.3340</td>\n",
344
+ " <td>5.336</td>\n",
345
+ " <td>5.136</td>\n",
346
+ " <td>5.1460</td>\n",
347
+ " <td>8.928</td>\n",
348
+ " <td>...</td>\n",
349
+ " <td>1</td>\n",
350
+ " <td>0.611600</td>\n",
351
+ " <td>0.615000</td>\n",
352
+ " <td>1.5</td>\n",
353
+ " <td>zBRIGHT</td>\n",
354
+ " <td>-99</td>\n",
355
+ " <td>0</td>\n",
356
+ " <td>0</td>\n",
357
+ " <td>0</td>\n",
358
+ " <td>0</td>\n",
359
+ " </tr>\n",
360
+ " <tr>\n",
361
+ " <th>1292</th>\n",
362
+ " <td>1293</td>\n",
363
+ " <td>149.530899</td>\n",
364
+ " <td>1.626842</td>\n",
365
+ " <td>1.0330</td>\n",
366
+ " <td>0.8639</td>\n",
367
+ " <td>0.8805</td>\n",
368
+ " <td>1.963</td>\n",
369
+ " <td>1.939</td>\n",
370
+ " <td>1.9980</td>\n",
371
+ " <td>3.388</td>\n",
372
+ " <td>...</td>\n",
373
+ " <td>1</td>\n",
374
+ " <td>0.751600</td>\n",
375
+ " <td>0.763700</td>\n",
376
+ " <td>9.5</td>\n",
377
+ " <td>zBRIGHT</td>\n",
378
+ " <td>-99</td>\n",
379
+ " <td>0</td>\n",
380
+ " <td>0</td>\n",
381
+ " <td>0</td>\n",
382
+ " <td>0</td>\n",
383
+ " </tr>\n",
384
+ " <tr>\n",
385
+ " <th>...</th>\n",
386
+ " <td>...</td>\n",
387
+ " <td>...</td>\n",
388
+ " <td>...</td>\n",
389
+ " <td>...</td>\n",
390
+ " <td>...</td>\n",
391
+ " <td>...</td>\n",
392
+ " <td>...</td>\n",
393
+ " <td>...</td>\n",
394
+ " <td>...</td>\n",
395
+ " <td>...</td>\n",
396
+ " <td>...</td>\n",
397
+ " <td>...</td>\n",
398
+ " <td>...</td>\n",
399
+ " <td>...</td>\n",
400
+ " <td>...</td>\n",
401
+ " <td>...</td>\n",
402
+ " <td>...</td>\n",
403
+ " <td>...</td>\n",
404
+ " <td>...</td>\n",
405
+ " <td>...</td>\n",
406
+ " <td>...</td>\n",
407
+ " </tr>\n",
408
+ " <tr>\n",
409
+ " <th>391055</th>\n",
410
+ " <td>391056</td>\n",
411
+ " <td>149.911942</td>\n",
412
+ " <td>2.737337</td>\n",
413
+ " <td>2.5840</td>\n",
414
+ " <td>2.7920</td>\n",
415
+ " <td>2.7740</td>\n",
416
+ " <td>4.309</td>\n",
417
+ " <td>4.247</td>\n",
418
+ " <td>4.0800</td>\n",
419
+ " <td>6.144</td>\n",
420
+ " <td>...</td>\n",
421
+ " <td>1</td>\n",
422
+ " <td>0.207600</td>\n",
423
+ " <td>9.999900</td>\n",
424
+ " <td>0.0</td>\n",
425
+ " <td>zBRIGHT</td>\n",
426
+ " <td>-99</td>\n",
427
+ " <td>0</td>\n",
428
+ " <td>0</td>\n",
429
+ " <td>0</td>\n",
430
+ " <td>0</td>\n",
431
+ " </tr>\n",
432
+ " <tr>\n",
433
+ " <th>391111</th>\n",
434
+ " <td>391112</td>\n",
435
+ " <td>149.960968</td>\n",
436
+ " <td>2.735883</td>\n",
437
+ " <td>1.1160</td>\n",
438
+ " <td>1.0270</td>\n",
439
+ " <td>1.0280</td>\n",
440
+ " <td>4.790</td>\n",
441
+ " <td>4.807</td>\n",
442
+ " <td>4.8790</td>\n",
443
+ " <td>14.450</td>\n",
444
+ " <td>...</td>\n",
445
+ " <td>1</td>\n",
446
+ " <td>0.690500</td>\n",
447
+ " <td>0.696300</td>\n",
448
+ " <td>1.5</td>\n",
449
+ " <td>zBRIGHT</td>\n",
450
+ " <td>-99</td>\n",
451
+ " <td>0</td>\n",
452
+ " <td>0</td>\n",
453
+ " <td>0</td>\n",
454
+ " <td>0</td>\n",
455
+ " </tr>\n",
456
+ " <tr>\n",
457
+ " <th>391133</th>\n",
458
+ " <td>391134</td>\n",
459
+ " <td>149.802002</td>\n",
460
+ " <td>2.735837</td>\n",
461
+ " <td>1.1510</td>\n",
462
+ " <td>0.9859</td>\n",
463
+ " <td>1.0060</td>\n",
464
+ " <td>2.038</td>\n",
465
+ " <td>2.059</td>\n",
466
+ " <td>1.9160</td>\n",
467
+ " <td>3.724</td>\n",
468
+ " <td>...</td>\n",
469
+ " <td>1</td>\n",
470
+ " <td>-99.900002</td>\n",
471
+ " <td>0.680074</td>\n",
472
+ " <td>2.0</td>\n",
473
+ " <td>PRIMUS</td>\n",
474
+ " <td>-99</td>\n",
475
+ " <td>0</td>\n",
476
+ " <td>0</td>\n",
477
+ " <td>0</td>\n",
478
+ " <td>0</td>\n",
479
+ " </tr>\n",
480
+ " <tr>\n",
481
+ " <th>391178</th>\n",
482
+ " <td>391179</td>\n",
483
+ " <td>149.902161</td>\n",
484
+ " <td>2.735792</td>\n",
485
+ " <td>0.6982</td>\n",
486
+ " <td>0.6542</td>\n",
487
+ " <td>0.5222</td>\n",
488
+ " <td>1.162</td>\n",
489
+ " <td>1.024</td>\n",
490
+ " <td>0.7999</td>\n",
491
+ " <td>3.115</td>\n",
492
+ " <td>...</td>\n",
493
+ " <td>1</td>\n",
494
+ " <td>0.860600</td>\n",
495
+ " <td>0.881794</td>\n",
496
+ " <td>2.0</td>\n",
497
+ " <td>PRIMUS</td>\n",
498
+ " <td>-99</td>\n",
499
+ " <td>0</td>\n",
500
+ " <td>0</td>\n",
501
+ " <td>0</td>\n",
502
+ " <td>0</td>\n",
503
+ " </tr>\n",
504
+ " <tr>\n",
505
+ " <th>391281</th>\n",
506
+ " <td>391282</td>\n",
507
+ " <td>149.553146</td>\n",
508
+ " <td>2.735168</td>\n",
509
+ " <td>3.1870</td>\n",
510
+ " <td>3.2080</td>\n",
511
+ " <td>3.1670</td>\n",
512
+ " <td>8.187</td>\n",
513
+ " <td>8.348</td>\n",
514
+ " <td>8.2720</td>\n",
515
+ " <td>12.890</td>\n",
516
+ " <td>...</td>\n",
517
+ " <td>-99</td>\n",
518
+ " <td>0.322000</td>\n",
519
+ " <td>0.299501</td>\n",
520
+ " <td>2.0</td>\n",
521
+ " <td>PRIMUS</td>\n",
522
+ " <td>-99</td>\n",
523
+ " <td>0</td>\n",
524
+ " <td>0</td>\n",
525
+ " <td>0</td>\n",
526
+ " <td>0</td>\n",
527
+ " </tr>\n",
528
+ " </tbody>\n",
529
+ "</table>\n",
530
+ "<p>10057 rows × 123 columns</p>\n",
531
+ "</div>"
532
+ ],
533
+ "text/plain": [
534
+ " ID RA DEC FLUX_G_1 FLUX_G_2 FLUX_G_3 FLUX_R_1 \\\n",
535
+ "368 369 149.862381 1.624455 0.4753 0.4252 0.4659 1.507 \n",
536
+ "614 615 149.967209 1.625431 1.3970 1.3210 1.2990 3.310 \n",
537
+ "863 864 150.029968 1.625488 1.8440 1.5770 1.5760 3.141 \n",
538
+ "951 952 149.713226 1.625920 2.3280 2.3360 2.3340 5.336 \n",
539
+ "1292 1293 149.530899 1.626842 1.0330 0.8639 0.8805 1.963 \n",
540
+ "... ... ... ... ... ... ... ... \n",
541
+ "391055 391056 149.911942 2.737337 2.5840 2.7920 2.7740 4.309 \n",
542
+ "391111 391112 149.960968 2.735883 1.1160 1.0270 1.0280 4.790 \n",
543
+ "391133 391134 149.802002 2.735837 1.1510 0.9859 1.0060 2.038 \n",
544
+ "391178 391179 149.902161 2.735792 0.6982 0.6542 0.5222 1.162 \n",
545
+ "391281 391282 149.553146 2.735168 3.1870 3.2080 3.1670 8.187 \n",
546
+ "\n",
547
+ " FLUX_R_2 FLUX_R_3 FLUX_I_1 ... mu_class_L07 photo_z_L15 \\\n",
548
+ "368 1.374 1.2680 3.983 ... 1 1.189000 \n",
549
+ "614 3.165 2.8200 3.815 ... 1 0.499900 \n",
550
+ "863 3.037 2.9770 6.058 ... 1 0.818700 \n",
551
+ "951 5.136 5.1460 8.928 ... 1 0.611600 \n",
552
+ "1292 1.939 1.9980 3.388 ... 1 0.751600 \n",
553
+ "... ... ... ... ... ... ... \n",
554
+ "391055 4.247 4.0800 6.144 ... 1 0.207600 \n",
555
+ "391111 4.807 4.8790 14.450 ... 1 0.690500 \n",
556
+ "391133 2.059 1.9160 3.724 ... 1 -99.900002 \n",
557
+ "391178 1.024 0.7999 3.115 ... 1 0.860600 \n",
558
+ "391281 8.348 8.2720 12.890 ... -99 0.322000 \n",
559
+ "\n",
560
+ " z_spec_S15 Q_f_S15 Instr_S15 reliable_S15 flag_X_ray_s15 \\\n",
561
+ "368 1.279900 1.5 zBRIGHT -99 0 \n",
562
+ "614 0.498300 2.5 zBRIGHT -99 0 \n",
563
+ "863 0.838300 2.5 zBRIGHT -99 0 \n",
564
+ "951 0.615000 1.5 zBRIGHT -99 0 \n",
565
+ "1292 0.763700 9.5 zBRIGHT -99 0 \n",
566
+ "... ... ... ... ... ... \n",
567
+ "391055 9.999900 0.0 zBRIGHT -99 0 \n",
568
+ "391111 0.696300 1.5 zBRIGHT -99 0 \n",
569
+ "391133 0.680074 2.0 PRIMUS -99 0 \n",
570
+ "391178 0.881794 2.0 PRIMUS -99 0 \n",
571
+ "391281 0.299501 2.0 PRIMUS -99 0 \n",
572
+ "\n",
573
+ " flag_IRAC_s15 STAR AGN \n",
574
+ "368 0 0 0 \n",
575
+ "614 0 0 0 \n",
576
+ "863 0 0 0 \n",
577
+ "951 0 0 0 \n",
578
+ "1292 0 0 0 \n",
579
+ "... ... ... ... \n",
580
+ "391055 0 0 0 \n",
581
+ "391111 0 0 0 \n",
582
+ "391133 0 0 0 \n",
583
+ "391178 0 0 0 \n",
584
+ "391281 0 0 0 \n",
585
+ "\n",
586
+ "[10057 rows x 123 columns]"
587
+ ]
588
+ },
589
+ "execution_count": 38,
590
+ "metadata": {},
591
+ "output_type": "execute_result"
592
+ }
593
+ ],
594
+ "source": [
595
+ "cat_valid_match[(cat_valid_match.reliable_S15<0)&(cat_valid_match.z_spec_S15>0)]"
596
+ ]
597
+ },
598
+ {
599
+ "cell_type": "code",
600
+ "execution_count": 33,
601
+ "id": "2d4324c9-2f8d-4aac-9435-c25b91cb4b26",
602
+ "metadata": {
603
+ "tags": []
604
+ },
605
+ "outputs": [],
606
+ "source": [
607
+ "cat_valid_match_fitTable = Table.from_pandas(cat_valid_match)\n",
608
+ "\n",
609
+ "# Define the output file path\n",
610
+ "output_file_path = \"/data/astro/scratch/lcabayol/Euclid/NNphotozs/Euclid_EXT_MER_PHZ_DC2_v1.5/euclid_cosmos_DC2_S1_v2.1_valid_matched.fits\"\n",
611
+ "\n",
612
+ "# Save the FITS table to the output file\n",
613
+ "cat_valid_match_fitTable.write(output_file_path, format='fits', overwrite=True)"
614
+ ]
615
+ },
616
+ {
617
+ "cell_type": "code",
618
+ "execution_count": null,
619
+ "id": "8b8b25f3-1f2b-4e61-b644-c0be213d9449",
620
+ "metadata": {},
621
+ "outputs": [],
622
+ "source": []
623
+ },
624
+ {
625
+ "cell_type": "code",
626
+ "execution_count": 72,
627
+ "id": "7df1acba-15a2-4555-b2ae-6ce4ad55df4b",
628
+ "metadata": {
629
+ "tags": []
630
+ },
631
+ "outputs": [
632
+ {
633
+ "data": {
634
+ "text/plain": [
635
+ "array([ 0. , 3. , 9. , 1. , 4. , 20. , 9.5, 2. , -10. ,\n",
636
+ " 22. , 21. , 2.5, 3.5, 3.1, 14. , 13.1, 10. , 1.1,\n",
637
+ " 13. , 32. , 13.5, 1.5, 33. , 2.1, 4.5, 4.1, 14.5,\n",
638
+ " 29. , 39. , 22.5], dtype=float32)"
639
+ ]
640
+ },
641
+ "execution_count": 72,
642
+ "metadata": {},
643
+ "output_type": "execute_result"
644
+ }
645
+ ],
646
+ "source": [
647
+ "cat_calib[cat_calib.z_spec_S15>3].Q_f_S15.unique()"
648
+ ]
649
+ },
650
+ {
651
+ "cell_type": "code",
652
+ "execution_count": 66,
653
+ "id": "13ab99c4-0c15-46d2-8c57-27eeb1d6c762",
654
+ "metadata": {
655
+ "tags": []
656
+ },
657
+ "outputs": [
658
+ {
659
+ "data": {
660
+ "text/plain": [
661
+ "array([-99. , 2.5, 3.5, 4.5, 0. , 21.1, 4. , 1.5, 13.5,\n",
662
+ " 1.1, 23.5, 9. , 3. , 24.4, 2. , 2.1, 4.1, 1. ,\n",
663
+ " 9.5, 3.1, 23.1, 29.5, 4.4, 9.1, 22.4, 22.5, 2.4,\n",
664
+ " 9.3, 24.5, 22.1, 20. , 14.5, 11.5, 6. , -10. , 22. ,\n",
665
+ " 23. , 21. , 24. , 31. , 3.4, 1.4, -1. , 13.1, 18.1,\n",
666
+ " 21.5, 29.4, 12.1, 39. , 14. , 23.4, 29. , 19. , 0.5,\n",
667
+ " 12.5, 29.3, 10. , 13. , 24.1, 34. , 14.1, 32. , 21.4,\n",
668
+ " 33. , 18.5, 29.1, 5. , 18.3, 11.1, 14.4, 12. , 9.4,\n",
669
+ " 5.1], dtype=float32)"
670
+ ]
671
+ },
672
+ "execution_count": 66,
673
+ "metadata": {},
674
+ "output_type": "execute_result"
675
+ }
676
+ ],
677
+ "source": [
678
+ "cat_calib.Q_f_S15.unique()"
679
+ ]
680
+ },
681
+ {
682
+ "cell_type": "code",
683
+ "execution_count": 94,
684
+ "id": "12c171b0-8465-47e0-b894-243837e02795",
685
+ "metadata": {
686
+ "tags": []
687
+ },
688
+ "outputs": [],
689
+ "source": [
690
+ "weight_dict={(-99,0.99):0,\n",
691
+ " (1,1.99):0.5,\n",
692
+ " (2,2.99):0.75,\n",
693
+ " (3,4):1,\n",
694
+ " (9,9.99):0.25,\n",
695
+ " (10,10.99):0,\n",
696
+ " (11,11.99):0.5,\n",
697
+ " (12,12.99):0.75,\n",
698
+ " (13,14):1,\n",
699
+ " (14.01,40):0\n",
700
+ " }"
701
+ ]
702
+ },
703
+ {
704
+ "cell_type": "code",
705
+ "execution_count": 96,
706
+ "id": "d3080023-1af2-46cb-8294-034d47d52a41",
707
+ "metadata": {
708
+ "tags": []
709
+ },
710
+ "outputs": [],
711
+ "source": [
712
+ "def map_weight(Qz):\n",
713
+ " for key, value in weight_dict.items():\n",
714
+ " if key[0] <= Qz <= key[1]:\n",
715
+ " return value\n",
716
+ " return None\n",
717
+ "\n",
718
+ "# Apply the function to create the 'wQz' column\n",
719
+ "cat_calib['w_Q_f_S15'] = cat_calib['Q_f_S15'].apply(map_weight)\n"
720
+ ]
721
+ },
722
+ {
723
+ "cell_type": "code",
724
+ "execution_count": 93,
725
+ "id": "3367b799-da93-4710-b41e-55bb2a2d4059",
726
+ "metadata": {
727
+ "tags": []
728
+ },
729
+ "outputs": [
730
+ {
731
+ "data": {
732
+ "text/html": [
733
+ "<div>\n",
734
+ "<style scoped>\n",
735
+ " .dataframe tbody tr th:only-of-type {\n",
736
+ " vertical-align: middle;\n",
737
+ " }\n",
738
+ "\n",
739
+ " .dataframe tbody tr th {\n",
740
+ " vertical-align: top;\n",
741
+ " }\n",
742
+ "\n",
743
+ " .dataframe thead th {\n",
744
+ " text-align: right;\n",
745
+ " }\n",
746
+ "</style>\n",
747
+ "<table border=\"1\" class=\"dataframe\">\n",
748
+ " <thead>\n",
749
+ " <tr style=\"text-align: right;\">\n",
750
+ " <th></th>\n",
751
+ " <th>ID</th>\n",
752
+ " <th>RA</th>\n",
753
+ " <th>DEC</th>\n",
754
+ " <th>FLUX_G_1</th>\n",
755
+ " <th>FLUX_G_2</th>\n",
756
+ " <th>FLUX_G_3</th>\n",
757
+ " <th>FLUX_R_1</th>\n",
758
+ " <th>FLUX_R_2</th>\n",
759
+ " <th>FLUX_R_3</th>\n",
760
+ " <th>FLUX_I_1</th>\n",
761
+ " <th>...</th>\n",
762
+ " <th>photo_z_L15</th>\n",
763
+ " <th>z_spec_S15</th>\n",
764
+ " <th>Q_f_S15</th>\n",
765
+ " <th>Instr_S15</th>\n",
766
+ " <th>reliable_S15</th>\n",
767
+ " <th>flag_X_ray_s15</th>\n",
768
+ " <th>flag_IRAC_s15</th>\n",
769
+ " <th>STAR</th>\n",
770
+ " <th>AGN</th>\n",
771
+ " <th>wQz</th>\n",
772
+ " </tr>\n",
773
+ " </thead>\n",
774
+ " <tbody>\n",
775
+ " <tr>\n",
776
+ " <th>0</th>\n",
777
+ " <td>32</td>\n",
778
+ " <td>-99.0</td>\n",
779
+ " <td>-99.0</td>\n",
780
+ " <td>0.27910</td>\n",
781
+ " <td>0.26540</td>\n",
782
+ " <td>-0.060160</td>\n",
783
+ " <td>0.16420</td>\n",
784
+ " <td>0.10770</td>\n",
785
+ " <td>0.09359</td>\n",
786
+ " <td>0.6225</td>\n",
787
+ " <td>...</td>\n",
788
+ " <td>2.095800</td>\n",
789
+ " <td>-99.0</td>\n",
790
+ " <td>-99.0</td>\n",
791
+ " <td>-99</td>\n",
792
+ " <td>-99</td>\n",
793
+ " <td>0</td>\n",
794
+ " <td>0</td>\n",
795
+ " <td>0</td>\n",
796
+ " <td>0</td>\n",
797
+ " <td>NaN</td>\n",
798
+ " </tr>\n",
799
+ " <tr>\n",
800
+ " <th>1</th>\n",
801
+ " <td>36</td>\n",
802
+ " <td>-99.0</td>\n",
803
+ " <td>-99.0</td>\n",
804
+ " <td>0.16160</td>\n",
805
+ " <td>0.11760</td>\n",
806
+ " <td>0.093950</td>\n",
807
+ " <td>0.13680</td>\n",
808
+ " <td>0.02803</td>\n",
809
+ " <td>0.06321</td>\n",
810
+ " <td>0.3125</td>\n",
811
+ " <td>...</td>\n",
812
+ " <td>0.138100</td>\n",
813
+ " <td>-99.0</td>\n",
814
+ " <td>-99.0</td>\n",
815
+ " <td>-99</td>\n",
816
+ " <td>-99</td>\n",
817
+ " <td>0</td>\n",
818
+ " <td>0</td>\n",
819
+ " <td>0</td>\n",
820
+ " <td>0</td>\n",
821
+ " <td>NaN</td>\n",
822
+ " </tr>\n",
823
+ " <tr>\n",
824
+ " <th>2</th>\n",
825
+ " <td>38</td>\n",
826
+ " <td>-99.0</td>\n",
827
+ " <td>-99.0</td>\n",
828
+ " <td>0.20970</td>\n",
829
+ " <td>0.23170</td>\n",
830
+ " <td>0.199000</td>\n",
831
+ " <td>0.38770</td>\n",
832
+ " <td>0.39770</td>\n",
833
+ " <td>0.33170</td>\n",
834
+ " <td>0.1775</td>\n",
835
+ " <td>...</td>\n",
836
+ " <td>1.080600</td>\n",
837
+ " <td>-99.0</td>\n",
838
+ " <td>-99.0</td>\n",
839
+ " <td>-99</td>\n",
840
+ " <td>-99</td>\n",
841
+ " <td>0</td>\n",
842
+ " <td>0</td>\n",
843
+ " <td>0</td>\n",
844
+ " <td>0</td>\n",
845
+ " <td>NaN</td>\n",
846
+ " </tr>\n",
847
+ " <tr>\n",
848
+ " <th>3</th>\n",
849
+ " <td>39</td>\n",
850
+ " <td>-99.0</td>\n",
851
+ " <td>-99.0</td>\n",
852
+ " <td>0.15680</td>\n",
853
+ " <td>0.04144</td>\n",
854
+ " <td>0.006729</td>\n",
855
+ " <td>0.32470</td>\n",
856
+ " <td>0.28490</td>\n",
857
+ " <td>0.10140</td>\n",
858
+ " <td>0.2689</td>\n",
859
+ " <td>...</td>\n",
860
+ " <td>-99.000000</td>\n",
861
+ " <td>-99.0</td>\n",
862
+ " <td>-99.0</td>\n",
863
+ " <td>-99</td>\n",
864
+ " <td>-99</td>\n",
865
+ " <td>0</td>\n",
866
+ " <td>0</td>\n",
867
+ " <td>0</td>\n",
868
+ " <td>0</td>\n",
869
+ " <td>NaN</td>\n",
870
+ " </tr>\n",
871
+ " <tr>\n",
872
+ " <th>4</th>\n",
873
+ " <td>40</td>\n",
874
+ " <td>-99.0</td>\n",
875
+ " <td>-99.0</td>\n",
876
+ " <td>0.29370</td>\n",
877
+ " <td>0.36790</td>\n",
878
+ " <td>0.381100</td>\n",
879
+ " <td>0.59510</td>\n",
880
+ " <td>0.48770</td>\n",
881
+ " <td>0.55310</td>\n",
882
+ " <td>0.2876</td>\n",
883
+ " <td>...</td>\n",
884
+ " <td>1.601600</td>\n",
885
+ " <td>-99.0</td>\n",
886
+ " <td>-99.0</td>\n",
887
+ " <td>-99</td>\n",
888
+ " <td>-99</td>\n",
889
+ " <td>0</td>\n",
890
+ " <td>0</td>\n",
891
+ " <td>0</td>\n",
892
+ " <td>0</td>\n",
893
+ " <td>NaN</td>\n",
894
+ " </tr>\n",
895
+ " <tr>\n",
896
+ " <th>...</th>\n",
897
+ " <td>...</td>\n",
898
+ " <td>...</td>\n",
899
+ " <td>...</td>\n",
900
+ " <td>...</td>\n",
901
+ " <td>...</td>\n",
902
+ " <td>...</td>\n",
903
+ " <td>...</td>\n",
904
+ " <td>...</td>\n",
905
+ " <td>...</td>\n",
906
+ " <td>...</td>\n",
907
+ " <td>...</td>\n",
908
+ " <td>...</td>\n",
909
+ " <td>...</td>\n",
910
+ " <td>...</td>\n",
911
+ " <td>...</td>\n",
912
+ " <td>...</td>\n",
913
+ " <td>...</td>\n",
914
+ " <td>...</td>\n",
915
+ " <td>...</td>\n",
916
+ " <td>...</td>\n",
917
+ " <td>...</td>\n",
918
+ " </tr>\n",
919
+ " <tr>\n",
920
+ " <th>190681</th>\n",
921
+ " <td>197465</td>\n",
922
+ " <td>-99.0</td>\n",
923
+ " <td>-99.0</td>\n",
924
+ " <td>0.23410</td>\n",
925
+ " <td>0.11830</td>\n",
926
+ " <td>0.060100</td>\n",
927
+ " <td>0.14460</td>\n",
928
+ " <td>0.24370</td>\n",
929
+ " <td>0.46160</td>\n",
930
+ " <td>0.2579</td>\n",
931
+ " <td>...</td>\n",
932
+ " <td>-99.900002</td>\n",
933
+ " <td>-99.0</td>\n",
934
+ " <td>-99.0</td>\n",
935
+ " <td>-99</td>\n",
936
+ " <td>-99</td>\n",
937
+ " <td>0</td>\n",
938
+ " <td>0</td>\n",
939
+ " <td>0</td>\n",
940
+ " <td>0</td>\n",
941
+ " <td>NaN</td>\n",
942
+ " </tr>\n",
943
+ " <tr>\n",
944
+ " <th>190682</th>\n",
945
+ " <td>197479</td>\n",
946
+ " <td>-99.0</td>\n",
947
+ " <td>-99.0</td>\n",
948
+ " <td>0.04739</td>\n",
949
+ " <td>0.04522</td>\n",
950
+ " <td>0.036710</td>\n",
951
+ " <td>0.17800</td>\n",
952
+ " <td>0.16930</td>\n",
953
+ " <td>0.10800</td>\n",
954
+ " <td>0.3385</td>\n",
955
+ " <td>...</td>\n",
956
+ " <td>-99.000000</td>\n",
957
+ " <td>-99.0</td>\n",
958
+ " <td>-99.0</td>\n",
959
+ " <td>-99</td>\n",
960
+ " <td>-99</td>\n",
961
+ " <td>0</td>\n",
962
+ " <td>0</td>\n",
963
+ " <td>0</td>\n",
964
+ " <td>0</td>\n",
965
+ " <td>NaN</td>\n",
966
+ " </tr>\n",
967
+ " <tr>\n",
968
+ " <th>190683</th>\n",
969
+ " <td>197490</td>\n",
970
+ " <td>-99.0</td>\n",
971
+ " <td>-99.0</td>\n",
972
+ " <td>4.81900</td>\n",
973
+ " <td>4.76700</td>\n",
974
+ " <td>4.774000</td>\n",
975
+ " <td>12.73000</td>\n",
976
+ " <td>12.71000</td>\n",
977
+ " <td>12.67000</td>\n",
978
+ " <td>20.5300</td>\n",
979
+ " <td>...</td>\n",
980
+ " <td>-99.900002</td>\n",
981
+ " <td>-99.0</td>\n",
982
+ " <td>-99.0</td>\n",
983
+ " <td>-99</td>\n",
984
+ " <td>-99</td>\n",
985
+ " <td>0</td>\n",
986
+ " <td>0</td>\n",
987
+ " <td>0</td>\n",
988
+ " <td>0</td>\n",
989
+ " <td>NaN</td>\n",
990
+ " </tr>\n",
991
+ " <tr>\n",
992
+ " <th>190684</th>\n",
993
+ " <td>197492</td>\n",
994
+ " <td>-99.0</td>\n",
995
+ " <td>-99.0</td>\n",
996
+ " <td>-0.16100</td>\n",
997
+ " <td>-0.48150</td>\n",
998
+ " <td>-0.490300</td>\n",
999
+ " <td>0.29440</td>\n",
1000
+ " <td>-0.63920</td>\n",
1001
+ " <td>-0.05621</td>\n",
1002
+ " <td>-1.5310</td>\n",
1003
+ " <td>...</td>\n",
1004
+ " <td>-99.000000</td>\n",
1005
+ " <td>-99.0</td>\n",
1006
+ " <td>-99.0</td>\n",
1007
+ " <td>-99</td>\n",
1008
+ " <td>-99</td>\n",
1009
+ " <td>0</td>\n",
1010
+ " <td>0</td>\n",
1011
+ " <td>0</td>\n",
1012
+ " <td>0</td>\n",
1013
+ " <td>NaN</td>\n",
1014
+ " </tr>\n",
1015
+ " <tr>\n",
1016
+ " <th>190685</th>\n",
1017
+ " <td>197497</td>\n",
1018
+ " <td>-99.0</td>\n",
1019
+ " <td>-99.0</td>\n",
1020
+ " <td>0.10890</td>\n",
1021
+ " <td>0.07218</td>\n",
1022
+ " <td>0.086700</td>\n",
1023
+ " <td>0.00439</td>\n",
1024
+ " <td>0.06940</td>\n",
1025
+ " <td>0.07060</td>\n",
1026
+ " <td>0.3944</td>\n",
1027
+ " <td>...</td>\n",
1028
+ " <td>-99.900002</td>\n",
1029
+ " <td>-99.0</td>\n",
1030
+ " <td>-99.0</td>\n",
1031
+ " <td>-99</td>\n",
1032
+ " <td>-99</td>\n",
1033
+ " <td>0</td>\n",
1034
+ " <td>0</td>\n",
1035
+ " <td>0</td>\n",
1036
+ " <td>0</td>\n",
1037
+ " <td>NaN</td>\n",
1038
+ " </tr>\n",
1039
+ " </tbody>\n",
1040
+ "</table>\n",
1041
+ "<p>190686 rows × 124 columns</p>\n",
1042
+ "</div>"
1043
+ ],
1044
+ "text/plain": [
1045
+ " ID RA DEC FLUX_G_1 FLUX_G_2 FLUX_G_3 FLUX_R_1 FLUX_R_2 \\\n",
1046
+ "0 32 -99.0 -99.0 0.27910 0.26540 -0.060160 0.16420 0.10770 \n",
1047
+ "1 36 -99.0 -99.0 0.16160 0.11760 0.093950 0.13680 0.02803 \n",
1048
+ "2 38 -99.0 -99.0 0.20970 0.23170 0.199000 0.38770 0.39770 \n",
1049
+ "3 39 -99.0 -99.0 0.15680 0.04144 0.006729 0.32470 0.28490 \n",
1050
+ "4 40 -99.0 -99.0 0.29370 0.36790 0.381100 0.59510 0.48770 \n",
1051
+ "... ... ... ... ... ... ... ... ... \n",
1052
+ "190681 197465 -99.0 -99.0 0.23410 0.11830 0.060100 0.14460 0.24370 \n",
1053
+ "190682 197479 -99.0 -99.0 0.04739 0.04522 0.036710 0.17800 0.16930 \n",
1054
+ "190683 197490 -99.0 -99.0 4.81900 4.76700 4.774000 12.73000 12.71000 \n",
1055
+ "190684 197492 -99.0 -99.0 -0.16100 -0.48150 -0.490300 0.29440 -0.63920 \n",
1056
+ "190685 197497 -99.0 -99.0 0.10890 0.07218 0.086700 0.00439 0.06940 \n",
1057
+ "\n",
1058
+ " FLUX_R_3 FLUX_I_1 ... photo_z_L15 z_spec_S15 Q_f_S15 Instr_S15 \\\n",
1059
+ "0 0.09359 0.6225 ... 2.095800 -99.0 -99.0 -99 \n",
1060
+ "1 0.06321 0.3125 ... 0.138100 -99.0 -99.0 -99 \n",
1061
+ "2 0.33170 0.1775 ... 1.080600 -99.0 -99.0 -99 \n",
1062
+ "3 0.10140 0.2689 ... -99.000000 -99.0 -99.0 -99 \n",
1063
+ "4 0.55310 0.2876 ... 1.601600 -99.0 -99.0 -99 \n",
1064
+ "... ... ... ... ... ... ... ... \n",
1065
+ "190681 0.46160 0.2579 ... -99.900002 -99.0 -99.0 -99 \n",
1066
+ "190682 0.10800 0.3385 ... -99.000000 -99.0 -99.0 -99 \n",
1067
+ "190683 12.67000 20.5300 ... -99.900002 -99.0 -99.0 -99 \n",
1068
+ "190684 -0.05621 -1.5310 ... -99.000000 -99.0 -99.0 -99 \n",
1069
+ "190685 0.07060 0.3944 ... -99.900002 -99.0 -99.0 -99 \n",
1070
+ "\n",
1071
+ " reliable_S15 flag_X_ray_s15 flag_IRAC_s15 STAR AGN wQz \n",
1072
+ "0 -99 0 0 0 0 NaN \n",
1073
+ "1 -99 0 0 0 0 NaN \n",
1074
+ "2 -99 0 0 0 0 NaN \n",
1075
+ "3 -99 0 0 0 0 NaN \n",
1076
+ "4 -99 0 0 0 0 NaN \n",
1077
+ "... ... ... ... ... ... ... \n",
1078
+ "190681 -99 0 0 0 0 NaN \n",
1079
+ "190682 -99 0 0 0 0 NaN \n",
1080
+ "190683 -99 0 0 0 0 NaN \n",
1081
+ "190684 -99 0 0 0 0 NaN \n",
1082
+ "190685 -99 0 0 0 0 NaN \n",
1083
+ "\n",
1084
+ "[190686 rows x 124 columns]"
1085
+ ]
1086
+ },
1087
+ "execution_count": 93,
1088
+ "metadata": {},
1089
+ "output_type": "execute_result"
1090
+ }
1091
+ ],
1092
+ "source": [
1093
+ "cat_calib"
1094
+ ]
1095
+ },
1096
+ {
1097
+ "cell_type": "code",
1098
+ "execution_count": null,
1099
+ "id": "968017d9-c4d7-4891-b74a-4422ee7bb73c",
1100
+ "metadata": {},
1101
+ "outputs": [],
1102
+ "source": []
1103
+ }
1104
+ ],
1105
+ "metadata": {
1106
+ "kernelspec": {
1107
+ "display_name": "DLenv2",
1108
+ "language": "python",
1109
+ "name": "dlenv2"
1110
+ },
1111
+ "language_info": {
1112
+ "codemirror_mode": {
1113
+ "name": "ipython",
1114
+ "version": 3
1115
+ },
1116
+ "file_extension": ".py",
1117
+ "mimetype": "text/x-python",
1118
+ "name": "python",
1119
+ "nbconvert_exporter": "python",
1120
+ "pygments_lexer": "ipython3",
1121
+ "version": "3.9.7"
1122
+ }
1123
+ },
1124
+ "nbformat": 4,
1125
+ "nbformat_minor": 5
1126
+ }
notebooks/toy_test.ipynb ADDED
The diff for this file is too large to render. See raw diff