# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.16.2 # kernelspec: # display_name: temps # language: python # name: temps # --- # # TABLE METRICS # %load_ext autoreload # %autoreload 2 import pandas as pd import numpy as np import os import torch from scipy import stats from astropy.io import fits from astropy.table import Table from pathlib import Path # matplotlib settings from matplotlib import rcParams import matplotlib.pyplot as plt rcParams["mathtext.fontset"] = "stix" rcParams["font.family"] = "STIXGeneral" from temps.archive import Archive from temps.utils import nmad, select_cut from temps.temps_arch import EncoderPhotometry, MeasureZ from temps.temps import TempsModule # ## LOAD DATA # define here the directory containing the photometric catalogues parent_dir = Path( "/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5" ) modules_dir = Path("../data/models/") # + filename_valid = "euclid_cosmos_DC2_S1_v2.1_valid_matched.fits" hdu_list = fits.open(parent_dir / filename_valid) cat = Table(hdu_list[1].data).to_pandas() cat = cat[cat["FLAG_PHOT"] == 0] cat = cat[cat["mu_class_L07"] == 1] cat["SNR_VIS"] = cat.FLUX_VIS / cat.FLUXERR_VIS # - cat = cat[cat.SNR_VIS > 10] ztarget = [ cat["z_spec_S15"].values[ii] if cat["z_spec_S15"].values[ii] > 0 else cat["photo_z_L15"].values[ii] for ii in range(len(cat)) ] specz_or_photo = [ 0 if cat["z_spec_S15"].values[ii] > 0 else 1 for ii in range(len(cat)) ] ID = cat["ID"] VISmag = cat["MAG_VIS"] zsflag = cat["reliable_S15"] cat["ztarget"] = ztarget cat["specz_or_photo"] = specz_or_photo cat = cat[cat.ztarget > 0] # ### EXTRACT PHOTOMETRY photoz_archive = Archive(path=parent_dir, only_zspec=False) f, ferr = photoz_archive._extract_fluxes(catalogue=cat) col, colerr = photoz_archive._to_colors(f, ferr) # ### MEASURE CATALOGUE # + # Initialize an empty dictionary to store DataFrames lab = "DA" nn_features = EncoderPhotometry() nn_features.load_state_dict( torch.load(modules_dir / f"modelF_{lab}.pt", map_location=torch.device("cpu")) ) nn_z = MeasureZ(num_gauss=6) nn_z.load_state_dict( torch.load(modules_dir / f"modelZ_{lab}.pt", map_location=torch.device("cpu")) ) temps_module = TempsModule(nn_features, nn_z) z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col), return_pz=True) # Create a DataFrame with the desired columns df = pd.DataFrame( np.c_[z, odds, cat.ztarget, cat.reliable_S15, cat.specz_or_photo], columns=["z", "odds", "ztarget", "reliable_S15", "specz_or_photo"], ) # Calculate additional columns or operations if needed df["zwerr"] = (df.z - df.ztarget) / (1 + df.ztarget) # Drop any rows with NaN values df = df.dropna() # - # ### SPECZ SAMPLE df_specz = df[(df.reliable_S15 == 1) & (df.specz_or_photo == 0)] # + df_selected, cut, dfcuts = select_cut( df_specz, completenss_lim=None, nmad_lim=0.055, outliers_lim=None, return_df=True ) # - print( dfcuts.to_latex( float_format="%.3f", columns=["Nobj", "completeness", "nmad", "eta"], index=False, ) ) # ### EUCLID SAMPLE df_euclid = df[(df.z > 0.2) & (df.z < 2.6)] df_euclid # + df_selected, cut, dfcuts = select_cut( df_euclid, completenss_lim=None, nmad_lim=0.05, outliers_lim=None, return_df=True ) # - print( dfcuts.to_latex( float_format="%.3f", columns=["Nobj", "completeness", "nmad", "eta"], index=False, ) )