Spaces:
Sleeping
Sleeping
laurenramroop
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from sentence_transformers import SentenceTransformer, util
|
3 |
import re
|
4 |
-
import nltk
|
5 |
-
from nltk.corpus import stopwords
|
6 |
-
from nltk.tokenize import word_tokenize
|
7 |
-
|
8 |
-
# Download NLTK data files
|
9 |
-
nltk.download("stopwords")
|
10 |
-
nltk.download("punkt")
|
11 |
-
|
12 |
-
# Load English stop words
|
13 |
-
stop_words = set(stopwords.words("english"))
|
14 |
|
15 |
@st.cache_resource
|
16 |
def load_model():
|
@@ -18,87 +8,39 @@ def load_model():
|
|
18 |
|
19 |
model = load_model()
|
20 |
|
21 |
-
# Synonym dictionary for common terms
|
22 |
-
synonyms = {
|
23 |
-
"data analysis": {"data analytics", "data analyst"},
|
24 |
-
"machine learning": {"ml", "artificial intelligence", "ai"},
|
25 |
-
"programming": {"coding", "development", "software engineering"},
|
26 |
-
"statistical analysis": {"statistics", "statistical modeling"},
|
27 |
-
"visualization": {"data viz", "tableau", "visualizing data"}
|
28 |
-
}
|
29 |
-
|
30 |
-
def preprocess(text):
|
31 |
-
# Tokenize, remove stop words, and normalize text
|
32 |
-
words = word_tokenize(text.lower())
|
33 |
-
filtered_words = [word for word in words if word.isalnum() and word not in stop_words]
|
34 |
-
normalized_text = " ".join(filtered_words)
|
35 |
-
return normalized_text
|
36 |
-
|
37 |
-
def synonym_match(job_desc, resume):
|
38 |
-
match_count = 0
|
39 |
-
total_keywords = 0
|
40 |
-
matched_keywords = set()
|
41 |
-
missing_keywords = set()
|
42 |
-
|
43 |
-
for key, variants in synonyms.items():
|
44 |
-
job_contains = any(term in job_desc for term in variants) or key in job_desc
|
45 |
-
resume_contains = any(term in resume for term in variants) or key in resume
|
46 |
-
|
47 |
-
if job_contains:
|
48 |
-
total_keywords += 1
|
49 |
-
if resume_contains:
|
50 |
-
match_count += 1
|
51 |
-
matched_keywords.add(key)
|
52 |
-
else:
|
53 |
-
missing_keywords.add(key)
|
54 |
-
|
55 |
-
return (match_count / total_keywords) * 100 if total_keywords > 0 else 0, list(matched_keywords)[:5], list(missing_keywords)[:5]
|
56 |
-
|
57 |
def keyword_match(job_desc, resume):
|
58 |
-
job_keywords = set(re.findall(r'\b\w+\b', job_desc))
|
59 |
-
resume_keywords = set(re.findall(r'\b\w+\b', resume))
|
60 |
common_keywords = job_keywords.intersection(resume_keywords)
|
61 |
-
return
|
62 |
|
63 |
-
st.title("Resume and Job Description Similarity Checker")
|
64 |
|
65 |
-
job_description = st.text_area("Paste
|
66 |
resume_text = st.text_area("Paste your resume here:", height=200)
|
67 |
|
68 |
if st.button("Compare"):
|
69 |
if job_description.strip() and resume_text.strip():
|
70 |
-
# Preprocess text
|
71 |
-
processed_job_desc = preprocess(job_description)
|
72 |
-
processed_resume = preprocess(resume_text)
|
73 |
-
|
74 |
# Calculate embeddings-based similarity
|
75 |
-
job_description_embedding = model.encode(
|
76 |
-
resume_embedding = model.encode(
|
77 |
similarity_score = util.cos_sim(job_description_embedding, resume_embedding).item() * 100
|
78 |
|
79 |
-
# Calculate keyword-based similarity
|
80 |
-
keyword_score
|
81 |
-
|
82 |
-
# Calculate synonym-based similarity and missing skills
|
83 |
-
synonym_score, synonym_matches, synonym_misses = synonym_match(processed_job_desc, processed_resume)
|
84 |
|
85 |
-
# Combine scores (
|
86 |
-
overall_score = (similarity_score * 0.
|
87 |
|
88 |
-
|
89 |
-
st.write(f"**Overall Similarity Score:** {overall_score:.2f}%")
|
90 |
|
91 |
-
#
|
92 |
-
st.write("**Matched Keywords:**", ", ".join(matched_keywords + synonym_matches)[:5])
|
93 |
-
st.write("**Missing Skills to Consider Adding:**", ", ".join(synonym_misses)[:5])
|
94 |
-
|
95 |
-
# Adjusted feedback based on combined score
|
96 |
if overall_score > 80:
|
97 |
st.success("Excellent match! Your resume closely aligns with the job description.")
|
98 |
elif overall_score > 65:
|
99 |
st.info("Strong match! Your resume aligns well, but a few minor tweaks could help.")
|
100 |
elif overall_score > 50:
|
101 |
-
st.warning("Moderate match. Your resume has some relevant information, but consider emphasizing
|
102 |
elif overall_score > 35:
|
103 |
st.error("Low match. Your resume does not align well. Consider revising to highlight key skills.")
|
104 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
from sentence_transformers import SentenceTransformer, util
|
3 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
@st.cache_resource
|
6 |
def load_model():
|
|
|
8 |
|
9 |
model = load_model()
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def keyword_match(job_desc, resume):
|
12 |
+
job_keywords = set(re.findall(r'\b\w+\b', job_desc.lower()))
|
13 |
+
resume_keywords = set(re.findall(r'\b\w+\b', resume.lower()))
|
14 |
common_keywords = job_keywords.intersection(resume_keywords)
|
15 |
+
return len(common_keywords) / len(job_keywords) * 100 if job_keywords else 0
|
16 |
|
17 |
+
st.title("Enhanced Resume and Job Description Similarity Checker")
|
18 |
|
19 |
+
job_description = st.text_area("Paste the job description here:", height=200)
|
20 |
resume_text = st.text_area("Paste your resume here:", height=200)
|
21 |
|
22 |
if st.button("Compare"):
|
23 |
if job_description.strip() and resume_text.strip():
|
|
|
|
|
|
|
|
|
24 |
# Calculate embeddings-based similarity
|
25 |
+
job_description_embedding = model.encode(job_description)
|
26 |
+
resume_embedding = model.encode(resume_text)
|
27 |
similarity_score = util.cos_sim(job_description_embedding, resume_embedding).item() * 100
|
28 |
|
29 |
+
# Calculate keyword-based similarity
|
30 |
+
keyword_score = keyword_match(job_description, resume_text)
|
|
|
|
|
|
|
31 |
|
32 |
+
# Combine scores (you could adjust the weights as needed)
|
33 |
+
overall_score = (similarity_score * 0.6) + (keyword_score * 0.4)
|
34 |
|
35 |
+
st.write(f"**Similarity Score:** {overall_score:.2f}%")
|
|
|
36 |
|
37 |
+
# Adjusted grading scale based on combined score
|
|
|
|
|
|
|
|
|
38 |
if overall_score > 80:
|
39 |
st.success("Excellent match! Your resume closely aligns with the job description.")
|
40 |
elif overall_score > 65:
|
41 |
st.info("Strong match! Your resume aligns well, but a few minor tweaks could help.")
|
42 |
elif overall_score > 50:
|
43 |
+
st.warning("Moderate match. Your resume has some relevant information, but consider emphasizing relevant skills.")
|
44 |
elif overall_score > 35:
|
45 |
st.error("Low match. Your resume does not align well. Consider revising to highlight key skills.")
|
46 |
else:
|