Spaces:
Runtime error
Runtime error
feat: plot it explanation and spinner
Browse files- pages/1_๐_Plotting.py +22 -8
pages/1_๐_Plotting.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
3 |
|
4 |
st.header("Plotting Time Series Data")
|
5 |
st.markdown("Users can load their time-series data in **.csv** format and select a particular feature and plot-type.\
|
@@ -23,15 +25,18 @@ def plot_collection(plot_only_this, collection, number_of_desired_plots=0):
|
|
23 |
if number_of_desired_plots:
|
24 |
if plots_count == number_of_desired_plots:
|
25 |
break
|
26 |
-
|
27 |
|
|
|
28 |
with st.sidebar:
|
29 |
-
plot = st.radio("Select the kind of visualization:",('
|
30 |
file = st.file_uploader("Load CSV file", accept_multiple_files = False)
|
31 |
if file:
|
32 |
df = pd.read_csv(file, index_col = False)
|
33 |
# df.index = df['Unnamed: 0'].tolist()
|
34 |
-
|
|
|
|
|
|
|
35 |
if 'df' not in st.session_state:
|
36 |
st.session_state['df'] = df
|
37 |
st.success("Your data has been successfully loaded! ๐ค")
|
@@ -45,13 +50,22 @@ else:
|
|
45 |
df_base = st.session_state.df if 'df' in list(st.session_state.keys()) else pd.DataFrame()
|
46 |
n = len(df_base)
|
47 |
col1, col2 = st.columns(2)
|
48 |
-
|
49 |
-
|
|
|
50 |
st.info(f"Your data has {n} samples.")
|
51 |
slider_range = list(range(n))
|
52 |
n_plot = st.slider("How many samples do you want to plot in the same graph", slider_range[0]+1, slider_range[-1]+1, 5)
|
53 |
st.write(f"Action: {plot} using {n_plot} samples")
|
54 |
-
st.button("Plot now! ๐")
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
st.warning("Consider running outlier detection to clean your data!", icon="โ ๏ธ")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import time
|
4 |
+
|
5 |
|
6 |
st.header("Plotting Time Series Data")
|
7 |
st.markdown("Users can load their time-series data in **.csv** format and select a particular feature and plot-type.\
|
|
|
25 |
if number_of_desired_plots:
|
26 |
if plots_count == number_of_desired_plots:
|
27 |
break
|
|
|
28 |
|
29 |
+
|
30 |
with st.sidebar:
|
31 |
+
plot = st.radio("Select the kind of visualization:",('Feature collection', 'Users comparison', 'Data distribution'))
|
32 |
file = st.file_uploader("Load CSV file", accept_multiple_files = False)
|
33 |
if file:
|
34 |
df = pd.read_csv(file, index_col = False)
|
35 |
# df.index = df['Unnamed: 0'].tolist()
|
36 |
+
try:
|
37 |
+
del df['Unnamed: 0']
|
38 |
+
except KeyError:
|
39 |
+
pass
|
40 |
if 'df' not in st.session_state:
|
41 |
st.session_state['df'] = df
|
42 |
st.success("Your data has been successfully loaded! ๐ค")
|
|
|
50 |
df_base = st.session_state.df if 'df' in list(st.session_state.keys()) else pd.DataFrame()
|
51 |
n = len(df_base)
|
52 |
col1, col2 = st.columns(2)
|
53 |
+
|
54 |
+
if not df_base.empty:
|
55 |
+
with col1:
|
56 |
st.info(f"Your data has {n} samples.")
|
57 |
slider_range = list(range(n))
|
58 |
n_plot = st.slider("How many samples do you want to plot in the same graph", slider_range[0]+1, slider_range[-1]+1, 5)
|
59 |
st.write(f"Action: {plot} using {n_plot} samples")
|
60 |
+
plot_it = st.button("Plot now! ๐")
|
61 |
+
if plot_it:
|
62 |
+
with st.spinner(f"Drawing plot to visualize {plot.lower()}"):
|
63 |
+
while True:
|
64 |
+
time.sleep(4)
|
65 |
+
# create a DataFrame with each run in the columns (depending on n)
|
66 |
+
with st.expander("See explanation"):
|
67 |
+
st.write(\"\"\"
|
68 |
+
The chart above shows...
|
69 |
+
\"\"\")
|
70 |
+
else:
|
71 |
st.warning("Consider running outlier detection to clean your data!", icon="โ ๏ธ")
|