laverdes commited on
Commit
ef746ab
·
1 Parent(s): b0eecf1

chore: columns refactor

Browse files
Files changed (1) hide show
  1. app.py +24 -21
app.py CHANGED
@@ -42,13 +42,17 @@ with col1:
42
  df_base["len_pupil_dilation"] = df_base.pupil_dilation.map(lambda l: len(l))
43
  df_base["len_baseline"] = df_base.baseline.map(lambda l: len(l))
44
  st.info(f"number of files: {len(file_names)}")
45
- st.markdown("Your original data with some extra information about the length of the time-series fields")
46
- st.dataframe(df_base)
47
  else:
48
  st.caption("Upload your data using the sidebar to start :sunglasses:")
49
 
 
 
 
 
50
  # Cleaning starts
51
- with col2:
52
  if not df_base.empty:
53
  st.markdown("**Cleaning actions**")
54
  detect_blinking = st.button("I want to clean my data 🤗")
@@ -84,25 +88,24 @@ with col2:
84
  st.caption("No blinking values were found in your data! ")
85
 
86
  # Add calculated fields
87
- with col2:
88
- if 'df' in list(st.session_state.keys()):
89
- df_right = st.session_state.df.copy(deep=True)
90
- if "baseline" in list(df_right.keys()):
91
- st.markdown(f"A **baseline** feature has been found on your data, do you want to merge it with any of the other features in a new calculated field?")
92
- option = st.multiselect('Select a feature to create relative calculated feature ➕', [k for k in list(df_right.keys()) if k != 'baseline'], [[k for k in list(df_right.keys()) if k != 'baseline'][-4]])
93
- relative_key = f"relative_{option[0]}"
94
- add_relative = st.button(f"Add {relative_key}")
95
- if add_relative:
96
- baseline_mean = [sum(s)/len(s) for s in df_right['baseline']]
97
- df_right[relative_key] = [[field_value - baseline_mean[i] for field_value in df_right[option[0]][i]] for i in range(len(df_right))]
98
- st.markdown("After adding calculated fields")
99
- st.dataframe(df_right)
100
- csv = convert_df(df_right)
101
 
102
- # Save transformations to disk
103
- downl = st.download_button("Download CSV 💾", csv, "file.csv", "text/csv", key='download-csv')
104
- if downl:
105
- st.info("Your data has been downloaded, you can visualize and detect outliers in the 'Plotting' and 'Detect Outliers' pages on the sidebar.")
106
 
107
  if not df_base.empty:
108
  with col1:
 
42
  df_base["len_pupil_dilation"] = df_base.pupil_dilation.map(lambda l: len(l))
43
  df_base["len_baseline"] = df_base.baseline.map(lambda l: len(l))
44
  st.info(f"number of files: {len(file_names)}")
45
+ if 'df_base' not in st.session_state:
46
+ st.session_state['df_base'] = df_base
47
  else:
48
  st.caption("Upload your data using the sidebar to start :sunglasses:")
49
 
50
+ if 'df_base' in st.session_state:
51
+ st.markdown("Your original data with some extra information about the length of the time-series fields")
52
+ st.dataframe(st.session_state.df_base)
53
+
54
  # Cleaning starts
55
+ with col1:
56
  if not df_base.empty:
57
  st.markdown("**Cleaning actions**")
58
  detect_blinking = st.button("I want to clean my data 🤗")
 
88
  st.caption("No blinking values were found in your data! ")
89
 
90
  # Add calculated fields
91
+ if 'df' in list(st.session_state.keys()):
92
+ df_right = st.session_state.df.copy(deep=True)
93
+ if "baseline" in list(df_right.keys()):
94
+ st.markdown(f"A **baseline** feature has been found on your data, do you want to merge it with any of the other features in a new calculated field?")
95
+ option = st.multiselect('Select a feature to create relative calculated feature ➕', [k for k in list(df_right.keys()) if k != 'baseline'], [[k for k in list(df_right.keys()) if k != 'baseline'][-4]])
96
+ relative_key = f"relative_{option[0]}"
97
+ add_relative = st.button(f"Add {relative_key}")
98
+ if add_relative:
99
+ baseline_mean = [sum(s)/len(s) for s in df_right['baseline']]
100
+ df_right[relative_key] = [[field_value - baseline_mean[i] for field_value in df_right[option[0]][i]] for i in range(len(df_right))]
101
+ st.markdown("After adding calculated fields")
102
+ st.dataframe(df_right)
103
+ csv = convert_df(df_right)
 
104
 
105
+ # Save transformations to disk
106
+ downl = st.download_button("Download CSV 💾", csv, "file.csv", "text/csv", key='download-csv')
107
+ if downl:
108
+ st.info("Your data has been downloaded, you can visualize and detect outliers in the 'Plotting' and 'Detect Outliers' pages on the sidebar.")
109
 
110
  if not df_base.empty:
111
  with col1: