Malikeh Ehghaghi
commited on
Commit
•
c02fbf1
1
Parent(s):
bd757bc
Add files via upload
Browse files- app.py +109 -0
- dataset_list.py +101 -0
- requirements.txt +4 -0
- style.css +18 -0
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from dataset_list import DatasetList
|
8 |
+
|
9 |
+
DESCRIPTION = '# Explore Medical Question Answering Datasets 🏥'
|
10 |
+
NOTES = '''
|
11 |
+
'''
|
12 |
+
FOOTER = ''''''
|
13 |
+
|
14 |
+
def main():
|
15 |
+
dataset_list = DatasetList()
|
16 |
+
|
17 |
+
with gr.Blocks(css='style.css') as demo:
|
18 |
+
gr.Markdown(DESCRIPTION)
|
19 |
+
|
20 |
+
search_box = gr.Textbox(
|
21 |
+
label='Search Dataset Name',
|
22 |
+
placeholder=
|
23 |
+
'You can search for titles with regular expressions. e.g. (?<!sur)face',
|
24 |
+
max_lines=1)
|
25 |
+
|
26 |
+
case_sensitive = gr.Checkbox(label='Case Sensitive')
|
27 |
+
|
28 |
+
filter_names = gr.CheckboxGroup(choices=[
|
29 |
+
'Dataset',
|
30 |
+
'Data Link',
|
31 |
+
'Paper',
|
32 |
+
], label='Filter')
|
33 |
+
|
34 |
+
# data_type_names = [
|
35 |
+
# 'DNA', 'scRNA', 'mRNA', 'scRNA perturbation', 'RNA structure prediction', 'RNA language model', 'protein language model', 'protein structure prediction',
|
36 |
+
# 'protein generation', 'protein function prediction', 'protein fitness prediction', 'antibody structure prediction', 'antibody language model', 'molecules',
|
37 |
+
# 'ligand generation', 'reaction-to-enzyme', 'enzyme generation', 'epigenomic', 'molecular docking', 'peptide property prediction',
|
38 |
+
# ]
|
39 |
+
|
40 |
+
# data_types = gr.CheckboxGroup(choices=data_type_names,
|
41 |
+
# value=data_type_names,
|
42 |
+
# label='Type')
|
43 |
+
|
44 |
+
# years = ['2020', '2021', '2022', '2023']
|
45 |
+
|
46 |
+
# years_checkbox = gr.CheckboxGroup(choices=years, value=years, label='Year of Publication/Preprint')
|
47 |
+
|
48 |
+
# model_type_names = [
|
49 |
+
# 'GPT2', 'GPT-Neo', 'GPT-NeoX', 'ESM', 'BERT', 'RoBERTa', 'BART', 'T5', 'MPNN', 'diffusion', 'custom model'
|
50 |
+
# ]
|
51 |
+
|
52 |
+
# model_types = gr.CheckboxGroup(choices=model_type_names,
|
53 |
+
# value=model_type_names,
|
54 |
+
# label='Base Model')
|
55 |
+
|
56 |
+
search_button = gr.Button('Search')
|
57 |
+
|
58 |
+
number_of_datasets = gr.Textbox(label='Number of Datasets Found')
|
59 |
+
table = gr.HTML(show_label=False)
|
60 |
+
|
61 |
+
gr.Markdown(NOTES)
|
62 |
+
gr.Markdown(FOOTER)
|
63 |
+
|
64 |
+
demo.load(fn=dataset_list.render,
|
65 |
+
inputs=[
|
66 |
+
search_box,
|
67 |
+
case_sensitive,
|
68 |
+
filter_names
|
69 |
+
# data_types,
|
70 |
+
# years_checkbox,
|
71 |
+
#model_types
|
72 |
+
],
|
73 |
+
outputs=[
|
74 |
+
number_of_datasets,
|
75 |
+
table,
|
76 |
+
])
|
77 |
+
search_box.submit(fn=dataset_list.render,
|
78 |
+
inputs=[
|
79 |
+
search_box,
|
80 |
+
case_sensitive,
|
81 |
+
filter_names
|
82 |
+
# data_types,
|
83 |
+
# years_checkbox,
|
84 |
+
#model_types
|
85 |
+
],
|
86 |
+
outputs=[
|
87 |
+
number_of_datasets,
|
88 |
+
table,
|
89 |
+
])
|
90 |
+
|
91 |
+
search_button.click(fn=dataset_list.render,
|
92 |
+
inputs=[
|
93 |
+
search_box,
|
94 |
+
case_sensitive,
|
95 |
+
filter_names
|
96 |
+
# data_types,
|
97 |
+
# years_checkbox,
|
98 |
+
#model_types
|
99 |
+
],
|
100 |
+
outputs=[
|
101 |
+
number_of_datasets,
|
102 |
+
table,
|
103 |
+
])
|
104 |
+
demo.launch(enable_queue=True, share=False)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
if __name__ == '__main__':
|
109 |
+
main()
|
dataset_list.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import requests
|
6 |
+
from huggingface_hub.hf_api import SpaceInfo
|
7 |
+
|
8 |
+
url = 'https://docs.google.com/spreadsheets/d/1RoM2DgzaYJg6Ias1YNC2kQN01xSWJb1KEER9efb0X7A/edit#gid=0'
|
9 |
+
csv_url = url.replace('/edit#gid=', '/export?format=csv&gid=')
|
10 |
+
|
11 |
+
class DatasetList:
|
12 |
+
def __init__(self):
|
13 |
+
self.table = pd.read_csv(csv_url)
|
14 |
+
self._preprocess_table()
|
15 |
+
|
16 |
+
self.table_header = '''
|
17 |
+
<tr>
|
18 |
+
<td width="15%">Dataset Name</td>
|
19 |
+
<td width="10%">Question Type</td>
|
20 |
+
<td width="10%">Applied In Paper</td>
|
21 |
+
<td width="10%">Reference Paper</td>
|
22 |
+
<td width="20%">Brief Description</td>
|
23 |
+
<td width="5%">Count</td>
|
24 |
+
<td width="10%">Original Access Link</td>
|
25 |
+
<td width="10%">Publicly Available?</td>
|
26 |
+
<td width="10%">Access link on 🤗</td>
|
27 |
+
</tr>'''
|
28 |
+
|
29 |
+
def _preprocess_table(self) -> None:
|
30 |
+
self.table['dataset_name_lowercase'] = self.table.dataset_name.str.lower()
|
31 |
+
self.table['count'] = self.table['count'].apply(str)
|
32 |
+
|
33 |
+
rows = []
|
34 |
+
for row in self.table.itertuples():
|
35 |
+
dataset_name = f'{row.dataset_name}' if isinstance(row.dataset_name, str) else ''
|
36 |
+
question_type = f'{row.question_type}' if isinstance(row.question_type, str) else ''
|
37 |
+
used_in_paper = f'{row.used_in_paper}' if isinstance(row.used_in_paper, str) else ''
|
38 |
+
reference_paper = f'<a href="{row.reference_paper}" target="_blank">Paper</a>' if isinstance(row.reference_paper, str) else ''
|
39 |
+
brief_description = f'{row.brief_description}' if isinstance(row.brief_description, str) else ''
|
40 |
+
count = f'{row.count}' if isinstance(row.count, str) else ''
|
41 |
+
original_link = f'<a href="{row.original_link}" target="_blank">Access Link</a>' if isinstance(row.original_link, str) else ''
|
42 |
+
publicly_available = f'<a href="{row.publicly_available}" target="_blank">License</a>' if isinstance(row.publicly_available, str) else ''
|
43 |
+
huggingface_link = f'<a href="{row.huggingface_link}" target="_blank">HF Link</a>' if isinstance(row.huggingface_link, str) else ''
|
44 |
+
row = f'''
|
45 |
+
<tr>
|
46 |
+
<td>{dataset_name}</td>
|
47 |
+
<td>{question_type}</td>
|
48 |
+
<td>{used_in_paper}</td>
|
49 |
+
<td>{reference_paper}</td>
|
50 |
+
<td>{brief_description}</td>
|
51 |
+
<td>{count}</td>
|
52 |
+
<td>{original_link}</td>
|
53 |
+
<td>{publicly_available}</td>
|
54 |
+
<td>{huggingface_link}</td>
|
55 |
+
</tr>'''
|
56 |
+
rows.append(row)
|
57 |
+
self.table['html_table_content'] = rows
|
58 |
+
|
59 |
+
def render(self, search_query: str,
|
60 |
+
case_sensitive: bool,
|
61 |
+
filter_names: list[str]
|
62 |
+
) -> tuple[int, str]:
|
63 |
+
df = self.table
|
64 |
+
if search_query:
|
65 |
+
if case_sensitive:
|
66 |
+
df = df[df.dataset_name.str.contains(search_query)]
|
67 |
+
else:
|
68 |
+
df = df[df.dataset_name_lowercase.str.contains(search_query.lower())]
|
69 |
+
has_dataset = 'Dataset' in filter_names
|
70 |
+
has_datalink = 'Data Link' in filter_names
|
71 |
+
has_paper = 'Paper' in filter_names
|
72 |
+
df = self.filter_table(df, has_dataset, has_datalink, has_paper)
|
73 |
+
#df = self.filter_table(df, has_paper, has_github, has_model, data_types, model_types)
|
74 |
+
return len(df), self.to_html(df, self.table_header)
|
75 |
+
|
76 |
+
@staticmethod
|
77 |
+
def filter_table(df: pd.DataFrame,
|
78 |
+
has_dataset: bool,
|
79 |
+
has_datalink: bool,
|
80 |
+
has_paper: bool
|
81 |
+
) -> pd.DataFrame:
|
82 |
+
if has_dataset:
|
83 |
+
df = df[~df.dataset_name.isna()]
|
84 |
+
if has_datalink:
|
85 |
+
df = df[~df.huggingface_link.isna() | ~df.original_link.isna()]
|
86 |
+
if has_paper:
|
87 |
+
df = df[~df.reference_paper.isna()]
|
88 |
+
# df = df[df.data_type.isin(set(data_types))]
|
89 |
+
#df = df[df.base_model.isin(set(model_types))]
|
90 |
+
# df = df[df.year.isin(set(years))]
|
91 |
+
return df
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def to_html(df: pd.DataFrame, table_header: str) -> str:
|
95 |
+
table_data = ''.join(df.html_table_content)
|
96 |
+
html = f'''
|
97 |
+
<table>
|
98 |
+
{table_header}
|
99 |
+
{table_data}
|
100 |
+
</table>'''
|
101 |
+
return html
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gradio
|
3 |
+
numpy
|
4 |
+
pandas
|
style.css
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
4 |
+
table a {
|
5 |
+
background-color: transparent;
|
6 |
+
color: #58a6ff;
|
7 |
+
text-decoration: none;
|
8 |
+
}
|
9 |
+
a:active,
|
10 |
+
a:hover {
|
11 |
+
outline-width: 0;
|
12 |
+
}
|
13 |
+
a:hover {
|
14 |
+
text-decoration: underline;
|
15 |
+
}
|
16 |
+
table, th, td {
|
17 |
+
border: 1px solid;
|
18 |
+
}
|