OpenLLMFrenchLeaderboard / scripts /create_request_file.py
Clémentine
fix value error in param size
ccefec9
raw
history blame
3.76 kB
import json
import os
import pprint
import re
from datetime import datetime, timezone
import click
from colorama import Fore
from huggingface_hub import HfApi, snapshot_download
EVAL_REQUESTS_PATH = "eval-queue"
QUEUE_REPO = "open-llm-leaderboard/requests"
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
weight_types = ("Original", "Delta", "Adapter")
def get_model_size(model_info, precision: str):
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
try:
size_match = re.search(size_pattern, model_info.modelId.lower())
model_size = size_match.group(0)
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
except AttributeError:
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def main():
api = HfApi()
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
model_name = click.prompt("Enter model name")
revision = click.prompt("Enter revision", default="main")
precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
model_type = click.prompt("Enter model type", type=click.Choice(model_types))
weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
base_model = click.prompt("Enter base model", default="")
status = click.prompt("Enter status", default="FINISHED")
try:
model_info = api.model_info(repo_id=model_name, revision=revision)
except Exception as e:
print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
return 1
model_size = get_model_size(model_info=model_info, precision=precision)
try:
license = model_info.cardData["license"]
except Exception:
license = "?"
eval_entry = {
"model": model_name,
"base_model": base_model,
"revision": revision,
"private": False,
"precision": precision,
"weight_type": weight_type,
"status": status,
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
}
user_name = ""
model_path = model_name
if "/" in model_name:
user_name = model_name.split("/")[0]
model_path = model_name.split("/")[1]
pprint.pprint(eval_entry)
if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
click.echo("continuing...")
out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(out_dir, exist_ok=True)
out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
else:
click.echo("aborting...")
if __name__ == "__main__":
main()