Ajouter le script Gradio et les dépendances*
Browse files- .env +2 -0
- .gitignore +2 -0
- app.py +23 -24
.env
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
QDRANT_URL="https://ebe79742-e3ac-4d09-a2c6-63946024cc7a.us-east4-0.gcp.cloud.qdrant.io"
|
2 |
+
QDRANT_KEY=""_NnGLuSMH4Qwv-ancoFh88YvzuR7WbyidAorVOVQ_eMCbPhxTb2TSw"
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Ignore le fichier .env
|
2 |
+
.env
|
app.py
CHANGED
@@ -1,55 +1,54 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
from qdrant_client import QdrantClient
|
4 |
from transformers import ClapModel, ClapProcessor
|
5 |
-
from
|
6 |
-
|
7 |
-
# Utilisation de Hugging Face Hub API pour récupérer les secrets
|
8 |
-
api = HfApi()
|
9 |
-
secrets = api.repository_config("leadr64/audi_data") # Remplacez par votre nom d'utilisateur et nom du repository
|
10 |
-
|
11 |
-
qdrant_url = secrets.get("QDRANT_URL")
|
12 |
-
qdrant_key = secrets.get("QDRANT_KEY")
|
13 |
-
|
14 |
-
if not qdrant_url or not qdrant_key:
|
15 |
-
raise ValueError("QDRANT_URL and QDRANT_KEY must be set as secrets in your Hugging Face repository.")
|
16 |
|
17 |
-
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
print("[INFO]
|
24 |
-
model_name = "laion/
|
25 |
model = ClapModel.from_pretrained(model_name)
|
26 |
processor = ClapProcessor.from_pretrained(model_name)
|
27 |
|
28 |
-
# Interface
|
29 |
max_results = 10
|
30 |
|
|
|
31 |
def sound_search(query):
|
32 |
text_inputs = processor(text=query, return_tensors="pt")
|
33 |
text_embed = model.get_text_features(**text_inputs)[0]
|
34 |
|
35 |
hits = client.search(
|
36 |
collection_name="demo_spaces_db",
|
37 |
-
query_vector=text_embed
|
38 |
limit=max_results,
|
39 |
)
|
40 |
return [
|
41 |
gr.Audio(
|
42 |
-
|
43 |
label=f"style: {hit.payload['style']} -- score: {hit.score}")
|
44 |
for hit in hits
|
45 |
]
|
46 |
|
|
|
47 |
with gr.Blocks() as demo:
|
48 |
gr.Markdown(
|
49 |
-
"""#
|
50 |
)
|
51 |
-
inp = gr.Textbox(placeholder="
|
52 |
-
out = [gr.Audio(label=f"{x}") for x in range(max_results)] #
|
53 |
-
inp.change(
|
54 |
|
55 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from qdrant_client import QdrantClient
|
5 |
from transformers import ClapModel, ClapProcessor
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Charger les variables d'environnement à partir du fichier .env
|
10 |
+
load_dotenv()
|
11 |
|
12 |
+
# Récupérer le mot de passe depuis les variables d'environnement
|
13 |
+
QDRANT_URL = os.getenv('QDRANT_URL')
|
14 |
+
QDRANT_KEY = os.getenv('QDRANT_KEY')
|
15 |
+
# Loading the Qdrant DB in local ###################################################################
|
16 |
+
client = QdrantClient(QDRANT_URL, api_key=QDRANT_KEY)
|
17 |
+
print("[INFO] Client created...")
|
18 |
|
19 |
+
# loading the model
|
20 |
+
print("[INFO] Loading the model...")
|
21 |
+
model_name = "laion/larger_clap_general"
|
22 |
model = ClapModel.from_pretrained(model_name)
|
23 |
processor = ClapProcessor.from_pretrained(model_name)
|
24 |
|
25 |
+
# Gradio Interface #################################################################################
|
26 |
max_results = 10
|
27 |
|
28 |
+
|
29 |
def sound_search(query):
|
30 |
text_inputs = processor(text=query, return_tensors="pt")
|
31 |
text_embed = model.get_text_features(**text_inputs)[0]
|
32 |
|
33 |
hits = client.search(
|
34 |
collection_name="demo_spaces_db",
|
35 |
+
query_vector=text_embed,
|
36 |
limit=max_results,
|
37 |
)
|
38 |
return [
|
39 |
gr.Audio(
|
40 |
+
hit.payload['audio_path'],
|
41 |
label=f"style: {hit.payload['style']} -- score: {hit.score}")
|
42 |
for hit in hits
|
43 |
]
|
44 |
|
45 |
+
|
46 |
with gr.Blocks() as demo:
|
47 |
gr.Markdown(
|
48 |
+
"""# Sound search database """
|
49 |
)
|
50 |
+
inp = gr.Textbox(placeholder="What sound are you looking for ?")
|
51 |
+
out = [gr.Audio(label=f"{x}") for x in range(max_results)] # Necessary to have different objs
|
52 |
+
inp.change(sound_search, inp, out)
|
53 |
|
54 |
demo.launch()
|