Spaces:
Runtime error
Runtime error
leandrocarneiro
commited on
Upload 3 files
Browse files
llm.py
CHANGED
@@ -14,7 +14,7 @@ def invoke_llm(context, task):
|
|
14 |
The context is: $$${context}$$$
|
15 |
"""
|
16 |
|
17 |
-
llm=ChatOpenAI(model_name="gpt-3.5-turbo",
|
18 |
temperature=0,
|
19 |
openai_api_key=os.environ['OPENAI_KEY'],
|
20 |
max_tokens=1000)
|
|
|
14 |
The context is: $$${context}$$$
|
15 |
"""
|
16 |
|
17 |
+
llm=ChatOpenAI(model_name="gpt-3.5-turbo-0125",
|
18 |
temperature=0,
|
19 |
openai_api_key=os.environ['OPENAI_KEY'],
|
20 |
max_tokens=1000)
|
main.py
CHANGED
@@ -39,6 +39,8 @@ def generate_news(subject, min_words, max_words, sites):
|
|
39 |
print(' Assunto: ' + subject)
|
40 |
obj_rag = rag.Rag(vectorstore, min_words, max_words)
|
41 |
result_news = obj_rag.generate_text(subject)
|
|
|
|
|
42 |
|
43 |
print('\n\n' + '*' * 50 + '\n\n')
|
44 |
print(result_news[0])
|
|
|
39 |
print(' Assunto: ' + subject)
|
40 |
obj_rag = rag.Rag(vectorstore, min_words, max_words)
|
41 |
result_news = obj_rag.generate_text(subject)
|
42 |
+
if type(result_news) == str:
|
43 |
+
return 'Erro: ' + result_news
|
44 |
|
45 |
print('\n\n' + '*' * 50 + '\n\n')
|
46 |
print(result_news[0])
|
rag.py
CHANGED
@@ -59,6 +59,7 @@ class Rag:
|
|
59 |
|
60 |
prompt_template = """Your task is to create news to a newspaper based on pieces of texts delimited by <> and a question delimited by <>.
|
61 |
Do not make up any information, create the news just based on the given information on the pieces of texts delimited by <>.
|
|
|
62 |
The news should have a tittle.
|
63 |
The news should be written in a formal language.
|
64 |
The news should have between {min_words} and {max_words} words and it should be in portuguese language.
|
@@ -70,12 +71,14 @@ class Rag:
|
|
70 |
partial_variables={"min_words": min_words, "max_words": max_words})
|
71 |
|
72 |
self.qa = ConversationalRetrievalChain.from_llm(
|
73 |
-
llm=ChatOpenAI(model_name="gpt-3.5-turbo",
|
74 |
temperature=0.1,
|
75 |
openai_api_key=os.environ['OPENAI_KEY'],
|
76 |
max_tokens=int(int(max_words) + (int(max_words) / 2))), #número máximo de tokens para a resposta
|
77 |
memory=self.memory,
|
78 |
-
retriever=vectorstore.as_retriever(
|
|
|
|
|
79 |
combine_docs_chain_kwargs={"prompt": self.prompt},
|
80 |
chain_type="stuff",#map_reduce, refine, map_rerank
|
81 |
return_source_documents=True,
|
@@ -84,6 +87,7 @@ class Rag:
|
|
84 |
try:
|
85 |
query = f"Elabore uma nova notícia sobre {subject}."
|
86 |
result_text = self.qa.invoke({"question": query})
|
|
|
87 |
|
88 |
list_result_sources = []
|
89 |
str_result_sources = ''
|
|
|
59 |
|
60 |
prompt_template = """Your task is to create news to a newspaper based on pieces of texts delimited by <> and a question delimited by <>.
|
61 |
Do not make up any information, create the news just based on the given information on the pieces of texts delimited by <>.
|
62 |
+
If you need to make up any information, please do not answer the question. Inform that you need more information to answer the question.
|
63 |
The news should have a tittle.
|
64 |
The news should be written in a formal language.
|
65 |
The news should have between {min_words} and {max_words} words and it should be in portuguese language.
|
|
|
71 |
partial_variables={"min_words": min_words, "max_words": max_words})
|
72 |
|
73 |
self.qa = ConversationalRetrievalChain.from_llm(
|
74 |
+
llm=ChatOpenAI(model_name="gpt-3.5-turbo-0125",
|
75 |
temperature=0.1,
|
76 |
openai_api_key=os.environ['OPENAI_KEY'],
|
77 |
max_tokens=int(int(max_words) + (int(max_words) / 2))), #número máximo de tokens para a resposta
|
78 |
memory=self.memory,
|
79 |
+
#retriever=vectorstore.as_retriever(search_type='similarity_score_threshold',
|
80 |
+
# search_kwargs={'k':4, 'score_threshold':0.5}), #search_kwargs={'k': 3}
|
81 |
+
retriever=vectorstore.as_retriever(),
|
82 |
combine_docs_chain_kwargs={"prompt": self.prompt},
|
83 |
chain_type="stuff",#map_reduce, refine, map_rerank
|
84 |
return_source_documents=True,
|
|
|
87 |
try:
|
88 |
query = f"Elabore uma nova notícia sobre {subject}."
|
89 |
result_text = self.qa.invoke({"question": query})
|
90 |
+
print('##### result', result_text)
|
91 |
|
92 |
list_result_sources = []
|
93 |
str_result_sources = ''
|