# Created by Leandro Carneiro at 19/01/2024 # Description: # ------------------------------------------------ #from langchain.embeddings import OpenAIEmbeddings from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.prompts import PromptTemplate from langchain_openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain import os import csv def read_csv_to_dict(filename): data_dict = {} with open(filename, mode='r', encoding='utf-8') as file: csv_reader = csv.reader(file) for row in csv_reader: key, value = row[0].split(';') data_dict[key] = value return data_dict def generate_embeddings_and_vectorstore(path): try: loader = DirectoryLoader(path=path, glob="**/*.txt") corpus = loader.load() print(f' Total de documentos antes do text_split = {len(corpus)}') text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=400) docs = text_splitter.split_documents(corpus) num_total_characters = sum([len(x.page_content) for x in docs]) print(f" Total de chunks depois do text_split = {len(docs)}") print(f" Média de caracteres por chunk = {num_total_characters / len(docs):,.0f}") dict_filename_url = read_csv_to_dict('./local_base/filename_url.csv') for doc in docs: filename = os.path.basename(doc.metadata["source"]) doc.metadata["link"] = dict_filename_url.get(filename) #print('docs') #print(docs) fc_embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_KEY']) vectorstore = Chroma.from_documents(docs, fc_embeddings) print('total de docs no vectorstore=',len(vectorstore.get()['documents'])) return vectorstore except Exception as e: print(str(e)) return str(e) class Rag: def __init__(self, vectorstore, min_words, max_words): self.text = None self.vectorstore = vectorstore self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key="answer") # #Do not use only your knowledge to make the news. prompt_template = """Your task is to create news for a newspaper based on pieces of text delimited by <> and a question delimited by <>. Do not use only your knowledge to make the news. Make the news based on the question, but using the pieces of text. If the pieces of text don't enough information about the question to create the news, just say that you need more sources of information, nothing more. The news should have a title. The news should be written in a formal language. The news should have between {min_words} and {max_words} words and it should be in Portuguese language. The news should be about the following context: <{context}> Question: <{question}> Answer here:""" self.prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"], partial_variables={"min_words": min_words, "max_words": max_words}) self.qa = ConversationalRetrievalChain.from_llm( llm=ChatOpenAI(model_name="gpt-3.5-turbo-0125", #0125 #1106 temperature=0, openai_api_key=os.environ['OPENAI_KEY'], max_tokens=int(int(max_words) + (int(max_words) / 2))), #número máximo de tokens para a resposta memory=self.memory, # retriever=vectorstore.as_retriever(search_type='similarity_score_threshold', # search_kwargs={'k':4, 'score_threshold':0.8}), #search_kwargs={'k': 3} retriever=vectorstore.as_retriever(), combine_docs_chain_kwargs={"prompt": self.prompt}, chain_type="stuff",#map_reduce, refine, map_rerank return_source_documents=True, ) # from langchain_together import Together # self.qa = ConversationalRetrievalChain.from_llm( # llm=Together(model="mistralai/Mixtral-8x7B-Instruct-v0.1", # 0125 #1106 # temperature=0, # #top_k=20, # together_api_key=os.environ['TOGETHER_KEY'], # max_tokens=int(int(max_words) + (int(max_words) / 2))), # # número máximo de tokens para a resposta # memory=self.memory, # # retriever=vectorstore.as_retriever(search_type='similarity_score_threshold', # # search_kwargs={'k':4, 'score_threshold':0.8}), #search_kwargs={'k': 3} # retriever=vectorstore.as_retriever(), # combine_docs_chain_kwargs={"prompt": self.prompt}, # chain_type="stuff", # map_reduce, refine, map_rerank # return_source_documents=True, # ) def generate_text(self, subject): try: query = f"Elabore uma nova notícia sobre {subject}." result_text = self.qa.invoke({"question": query}) print('##### result', result_text) list_result_sources = [] str_result_sources = '' for doc in result_text["source_documents"]: list_result_sources.append(doc.metadata['link']) result_sources = list(set(list_result_sources)) for i in range(len(result_sources)): str_result_sources += f'{i + 1}) {result_sources[i]}' + '\n' self.vectorstore.delete_collection() return (result_text["answer"], str_result_sources) except Exception as e: self.vectorstore.delete_collection() return str(e)