# Created by Leandro Carneiro at 19/01/2024 # Description: # ------------------------------------------------ #from langchain.embeddings import OpenAIEmbeddings from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.prompts import PromptTemplate from langchain_openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain import os import csv def read_csv_to_dict(filename): data_dict = {} with open(filename, mode='r', encoding='utf-8') as file: csv_reader = csv.reader(file) for row in csv_reader: key, value = row[0].split(';') data_dict[key] = value return data_dict def generate_embeddings_and_vectorstore(path): try: loader = DirectoryLoader(path=path, glob="**/*.txt") corpus = loader.load() print(f' Total de documentos antes do text_split = {len(corpus)}') text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=400) docs = text_splitter.split_documents(corpus) num_total_characters = sum([len(x.page_content) for x in docs]) print(f" Total de chunks depois do text_split = {len(docs)}") print(f" Média de caracteres por chunk = {num_total_characters / len(docs):,.0f}") dict_filename_url = read_csv_to_dict('./local_base/filename_url.csv') for doc in docs: filename = os.path.basename(doc.metadata["source"]) doc.metadata["link"] = dict_filename_url.get(filename) #print('docs') #print(docs) fc_embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_KEY']) vectorstore = Chroma.from_documents(docs, fc_embeddings) print('total de docs no vectorstore=',len(vectorstore.get()['documents'])) return vectorstore except Exception as e: print(str(e)) return str(e) class Rag: def __init__(self, vectorstore, min_words, max_words): self.text = None self.vectorstore = vectorstore self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key="answer") prompt_template = """Your task is to create news to a newspaper based on pieces of texts delimited by <> and a question delimited by <>. Do not make up any information, create the news just based on the given information on the pieces of texts delimited by <>. If you need to make up any information, please do not answer the question. Inform that you need more information to answer the question. The news should have a tittle. The news should be written in a formal language. The news should have between {min_words} and {max_words} words and it should be in portuguese language. The news should be about the following context: <{context}> Question: <{question}> Answer here:""" self.prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"], partial_variables={"min_words": min_words, "max_words": max_words}) self.qa = ConversationalRetrievalChain.from_llm( llm=ChatOpenAI(model_name="gpt-3.5-turbo-0125", temperature=0.1, openai_api_key=os.environ['OPENAI_KEY'], max_tokens=int(int(max_words) + (int(max_words) / 2))), #número máximo de tokens para a resposta memory=self.memory, #retriever=vectorstore.as_retriever(search_type='similarity_score_threshold', # search_kwargs={'k':4, 'score_threshold':0.5}), #search_kwargs={'k': 3} retriever=vectorstore.as_retriever(), combine_docs_chain_kwargs={"prompt": self.prompt}, chain_type="stuff",#map_reduce, refine, map_rerank return_source_documents=True, ) def generate_text(self, subject): try: query = f"Elabore uma nova notícia sobre {subject}." result_text = self.qa.invoke({"question": query}) print('##### result', result_text) list_result_sources = [] str_result_sources = '' for doc in result_text["source_documents"]: list_result_sources.append(doc.metadata['link']) result_sources = list(set(list_result_sources)) for i in range(len(result_sources)): str_result_sources += f'{i + 1}) {result_sources[i]}' + '\n' self.vectorstore.delete_collection() return (result_text["answer"], str_result_sources) except Exception as e: self.vectorstore.delete_collection() return str(e)