File size: 4,974 Bytes
3efd370
 
 
 
 
 
 
 
 
cd7bf6b
3efd370
 
 
 
 
cd7bf6b
3efd370
5d407bd
3efd370
 
5d407bd
3efd370
5d407bd
3efd370
 
5d407bd
3efd370
5d407bd
3efd370
 
5d407bd
3efd370
 
 
 
 
5d407bd
3efd370
 
 
 
 
5d407bd
3efd370
 
5d407bd
3efd370
5d407bd
3efd370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd7bf6b
3efd370
cd7bf6b
3efd370
 
 
cd7bf6b
3efd370
cd7bf6b
 
3efd370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb79de
3efd370
5cb79de
3efd370
5cb79de
3efd370
5cb79de
3efd370
5cb79de
3efd370
 
5cb79de
3efd370
 
5cb79de
3efd370
 
5cb79de
 
3efd370
 
 
cd7bf6b
3efd370
 
 
cd7bf6b
 
3efd370
 
cd7bf6b
3efd370
 
 
 
cd7bf6b
3efd370
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# from typing import List, Tuple
# from typing_extensions import Literal
# import logging
# import pandas as pd
# from pandas import DataFrame, Series
# from utils.config import getconfig
# from utils.preprocessing import processingpipeline
# import streamlit as st
# from transformers import pipeline

# ## Labels dictionary ###
# _lab_dict = {
#             '0':'NO',
#             '1':'YES',
#             }

# def get_target_labels(preds):

#     """
#     Function that takes the numerical predictions as an input and returns a list of the labels.
    
#     """
    
#     # Get label names
#     preds_list = preds.tolist()
    
#     predictions_names=[]
    
#     # loop through each prediction
#     for ele in preds_list:
    
#       # see if there is a value 1 and retrieve index
#       try:
#         index_of_one = ele.index(1)
#       except ValueError:
#         index_of_one = "NA"
    
#       # Retrieve the name of the label (if no prediction made = NA)
#       if index_of_one != "NA":
#         name  = label_dict[index_of_one]
#       else:
#         name = "Other"
    
#       # Append name to list
#       predictions_names.append(name)
    
#     return predictions_names

# @st.cache_resource
# def load_targetClassifier(config_file:str = None, classifier_name:str = None):
#     """
#     loads the document classifier using haystack, where the name/path of model
#     in HF-hub as string is used to fetch the model object.Either configfile or 
#     model should be passed.
#     1. https://docs.haystack.deepset.ai/reference/document-classifier-api
#     2. https://docs.haystack.deepset.ai/docs/document_classifier
#     Params
#     --------
#     config_file: config file path from which to read the model name
#     classifier_name: if modelname is passed, it takes a priority if not \
#     found then will look for configfile, else raise error.
#     Return: document classifier model
#     """
#     if not classifier_name:
#         if not config_file:
#             logging.warning("Pass either model name or config file")
#             return
#         else:
#             config = getconfig(config_file)
#             classifier_name = config.get('target','MODEL')
    
#     logging.info("Loading classifier")  
      
#     doc_classifier = pipeline("text-classification", 
#                             model=classifier_name, 
#                             top_k =1)

#     return doc_classifier


# @st.cache_data
# def target_classification(haystack_doc:pd.DataFrame,
#                         threshold:float = 0.5, 
#                         classifier_model:pipeline= None
#                         )->Tuple[DataFrame,Series]:
#     """
#     Text-Classification on the list of texts provided. Classifier provides the 
#     most appropriate label for each text. There labels indicate whether the paragraph
#     references a specific action, target or measure in the paragraph.
#     ---------
#     haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline 
#     contains the list of paragraphs in different format,here the list of 
#     Haystack Documents is used.
#     threshold: threshold value for the model to keep the results from classifier
#     classifiermodel: you can pass the classifier model directly,which takes priority
#     however if not then looks for model in streamlit session.
#     In case of streamlit avoid passing the model directly.
#     Returns
#     ----------
#     df: Dataframe with two columns['SDG:int', 'text']
#     x: Series object with the unique SDG covered in the document uploaded and 
#     the number of times it is covered/discussed/count_of_paragraphs. 
#     """
                            
#     logging.info("Working on target/action identification")
                            
#     haystack_doc['Vulnerability Label'] = 'NA'

#     if not classifier_model:

#         classifier_model = st.session_state['target_classifier']

#         # Get predictions
#         predictions = classifier_model(list(haystack_doc.text))

#         # Get labels for predictions
#         pred_labels = getlabels(predictions)

#         # Save labels
#         haystack_doc['Target Label'] = pred_labels

                            
#     # logging.info("Working on action/target extraction")
#     # if not classifier_model:
#     #     classifier_model = st.session_state['target_classifier']
    
#     # results = classifier_model(list(haystack_doc.text))
#     # labels_= [(l[0]['label'],
#     #            l[0]['score']) for l in results]
           

#     # df1 = DataFrame(labels_, columns=["Target Label","Target Score"])
#     # df = pd.concat([haystack_doc,df1],axis=1)
    
#     # df = df.sort_values(by="Target Score", ascending=False).reset_index(drop=True)
#     # df['Target Score'] = df['Target Score'].round(2)
#     # df.index += 1
#     # # df['Label_def'] = df['Target Label'].apply(lambda i: _lab_dict[i])

#     return haystack_doc