Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- appStore/adapmit.py +174 -0
- appStore/doc_processing (1).py +77 -0
- appStore/indicator.py +166 -0
appStore/adapmit.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys
|
3 |
+
sys.path.append('../utils')
|
4 |
+
|
5 |
+
#import needed libraries
|
6 |
+
import seaborn as sns
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
from utils.adapmit_classifier import load_adapmitClassifier,adapmit_classification
|
12 |
+
# from utils.keyword_extraction import textrank
|
13 |
+
import logging
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
from utils.config import get_classifier_params
|
16 |
+
from utils.preprocessing import paraLengthCheck
|
17 |
+
from io import BytesIO
|
18 |
+
import xlsxwriter
|
19 |
+
import plotly.express as px
|
20 |
+
|
21 |
+
# Declare all the necessary variables
|
22 |
+
classifier_identifier = 'adapmit'
|
23 |
+
params = get_classifier_params(classifier_identifier)
|
24 |
+
|
25 |
+
@st.cache_data
|
26 |
+
def to_excel(df):
|
27 |
+
len_df = len(df)
|
28 |
+
output = BytesIO()
|
29 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
30 |
+
df.to_excel(writer, index=False, sheet_name='Sheet1')
|
31 |
+
workbook = writer.book
|
32 |
+
worksheet = writer.sheets['Sheet1']
|
33 |
+
worksheet.data_validation('E2:E{}'.format(len_df),
|
34 |
+
{'validate': 'list',
|
35 |
+
'source': ['No', 'Yes', 'Discard']})
|
36 |
+
worksheet.data_validation('F2:F{}'.format(len_df),
|
37 |
+
{'validate': 'list',
|
38 |
+
'source': ['No', 'Yes', 'Discard']})
|
39 |
+
worksheet.data_validation('G2:G{}'.format(len_df),
|
40 |
+
{'validate': 'list',
|
41 |
+
'source': ['No', 'Yes', 'Discard']})
|
42 |
+
writer.save()
|
43 |
+
processed_data = output.getvalue()
|
44 |
+
return processed_data
|
45 |
+
|
46 |
+
def app():
|
47 |
+
|
48 |
+
### Main app code ###
|
49 |
+
with st.container():
|
50 |
+
|
51 |
+
if 'key1' in st.session_state:
|
52 |
+
df = st.session_state.key1
|
53 |
+
|
54 |
+
classifier = load_adapmitClassifier(classifier_name=params['model_name'])
|
55 |
+
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
56 |
+
if sum(df['Target Label'] == 'TARGET') > 100:
|
57 |
+
warning_msg = ": This might take sometime, please sit back and relax."
|
58 |
+
else:
|
59 |
+
warning_msg = ""
|
60 |
+
|
61 |
+
df = adapmit_classification(haystack_doc=df,
|
62 |
+
threshold= params['threshold'])
|
63 |
+
|
64 |
+
st.session_state.key1 = df
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# threshold= params['threshold']
|
71 |
+
# truth_df = df.drop(['text'],axis=1)
|
72 |
+
# truth_df = truth_df.astype(float) >= threshold
|
73 |
+
# truth_df = truth_df.astype(str)
|
74 |
+
# categories = list(truth_df.columns)
|
75 |
+
|
76 |
+
# placeholder = {}
|
77 |
+
# for val in categories:
|
78 |
+
# placeholder[val] = dict(truth_df[val].value_counts())
|
79 |
+
# count_df = pd.DataFrame.from_dict(placeholder)
|
80 |
+
# count_df = count_df.T
|
81 |
+
# count_df = count_df.reset_index()
|
82 |
+
# # st.write(count_df)
|
83 |
+
# placeholder = []
|
84 |
+
# for i in range(len(count_df)):
|
85 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'Yes'])
|
86 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'No'])
|
87 |
+
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
88 |
+
# # st.write("Total Paragraphs: {}".format(len(df)))
|
89 |
+
# fig = px.bar(count_df, y='category', x='count',
|
90 |
+
# color='truth_value',orientation='h', height =200)
|
91 |
+
# c1, c2 = st.columns([1,1])
|
92 |
+
# with c1:
|
93 |
+
# st.plotly_chart(fig,use_container_width= True)
|
94 |
+
|
95 |
+
# truth_df['labels'] = truth_df.apply(lambda x: {i if x[i]=='True' else None for i in categories}, axis=1)
|
96 |
+
# truth_df['labels'] = truth_df.apply(lambda x: list(x['labels'] -{None}),axis=1)
|
97 |
+
# # st.write(truth_df)
|
98 |
+
# df = pd.concat([df,truth_df['labels']],axis=1)
|
99 |
+
# st.markdown("###### Top few 'Mitigation' related paragraph/text ######")
|
100 |
+
# df = df.sort_values(by = ['Mitigation'], ascending=False)
|
101 |
+
# for i in range(3):
|
102 |
+
# if df.iloc[i]['Mitigation'] >= 0.50:
|
103 |
+
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Mitigation']))
|
104 |
+
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " ")))
|
105 |
+
|
106 |
+
# st.markdown("###### Top few 'Adaptation' related paragraph/text ######")
|
107 |
+
# df = df.sort_values(by = ['Adaptation'], ascending=False)
|
108 |
+
# for i in range(3):
|
109 |
+
# if df.iloc[i]['Adaptation'] > 0.5:
|
110 |
+
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Adaptation']))
|
111 |
+
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " ")))
|
112 |
+
# # st.write(df[['text','labels']])
|
113 |
+
# df['Validation'] = 'No'
|
114 |
+
# df['Val-Mitigation'] = 'No'
|
115 |
+
# df['Val-Adaptation'] = 'No'
|
116 |
+
# df_xlsx = to_excel(df)
|
117 |
+
# st.download_button(label='📥 Download Current Result',
|
118 |
+
# data=df_xlsx ,
|
119 |
+
# file_name= 'file_adaptation-mitigation.xlsx')
|
120 |
+
# # st.session_state.key4 =
|
121 |
+
|
122 |
+
# # category =set(df.columns)
|
123 |
+
# # removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'}
|
124 |
+
# # category = list(category - removecols)
|
125 |
+
|
126 |
+
# else:
|
127 |
+
# st.info("🤔 No document found, please try to upload it at the sidebar!")
|
128 |
+
# logging.warning("Terminated as no document provided")
|
129 |
+
|
130 |
+
# # Creating truth value dataframe
|
131 |
+
# if 'key4' in st.session_state:
|
132 |
+
# if st.session_state.key4 is not None:
|
133 |
+
# df = st.session_state.key4
|
134 |
+
# st.markdown("###### Select the threshold for classifier ######")
|
135 |
+
# c4, c5 = st.columns([1,1])
|
136 |
+
|
137 |
+
# with c4:
|
138 |
+
# threshold = st.slider("Threshold", min_value=0.00, max_value=1.0,
|
139 |
+
# step=0.01, value=0.5,
|
140 |
+
# help = "Keep High Value if want refined result, low if dont want to miss anything" )
|
141 |
+
# category =set(df.columns)
|
142 |
+
# removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'}
|
143 |
+
# category = list(category - removecols)
|
144 |
+
|
145 |
+
# placeholder = {}
|
146 |
+
# for val in category:
|
147 |
+
# temp = df[val].astype(float) > threshold
|
148 |
+
# temp = temp.astype(str)
|
149 |
+
# placeholder[val] = dict(temp.value_counts())
|
150 |
+
|
151 |
+
# count_df = pd.DataFrame.from_dict(placeholder)
|
152 |
+
# count_df = count_df.T
|
153 |
+
# count_df = count_df.reset_index()
|
154 |
+
# placeholder = []
|
155 |
+
# for i in range(len(count_df)):
|
156 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'False'])
|
157 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'True'])
|
158 |
+
|
159 |
+
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
160 |
+
# fig = px.bar(count_df, x='category', y='count',
|
161 |
+
# color='truth_value',
|
162 |
+
# height=400)
|
163 |
+
# st.write("")
|
164 |
+
# st.plotly_chart(fig)
|
165 |
+
|
166 |
+
# df['Validation'] = 'No'
|
167 |
+
# df['Val-Mitigation'] = 'No'
|
168 |
+
# df['Val-Adaptation'] = 'No'
|
169 |
+
# df_xlsx = to_excel(df)
|
170 |
+
# st.download_button(label='📥 Download Current Result',
|
171 |
+
# data=df_xlsx ,
|
172 |
+
# file_name= 'file_adaptation-mitigation.xlsx')
|
173 |
+
|
174 |
+
|
appStore/doc_processing (1).py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys;
|
3 |
+
sys.path.append('../utils')
|
4 |
+
from typing import List, Tuple
|
5 |
+
from typing_extensions import Literal
|
6 |
+
from haystack.schema import Document
|
7 |
+
from utils.config import get_classifier_params
|
8 |
+
from utils.preprocessing import processingpipeline,paraLengthCheck
|
9 |
+
import streamlit as st
|
10 |
+
import logging
|
11 |
+
import pandas as pd
|
12 |
+
params = get_classifier_params("preprocessing")
|
13 |
+
|
14 |
+
@st.cache_data
|
15 |
+
def runPreprocessingPipeline(file_name:str, file_path:str,
|
16 |
+
split_by: Literal["sentence", "word"] = 'sentence',
|
17 |
+
split_length:int = 2, split_respect_sentence_boundary:bool = False,
|
18 |
+
split_overlap:int = 0,remove_punc:bool = False)->List[Document]:
|
19 |
+
"""
|
20 |
+
creates the pipeline and runs the preprocessing pipeline,
|
21 |
+
the params for pipeline are fetched from paramconfig
|
22 |
+
Params
|
23 |
+
------------
|
24 |
+
file_name: filename, in case of streamlit application use
|
25 |
+
st.session_state['filename']
|
26 |
+
file_path: filepath, in case of streamlit application use st.session_state['filepath']
|
27 |
+
split_by: document splitting strategy either as word or sentence
|
28 |
+
split_length: when synthetically creating the paragrpahs from document,
|
29 |
+
it defines the length of paragraph.
|
30 |
+
split_respect_sentence_boundary: Used when using 'word' strategy for
|
31 |
+
splititng of text.
|
32 |
+
split_overlap: Number of words or sentences that overlap when creating
|
33 |
+
the paragraphs. This is done as one sentence or 'some words' make sense
|
34 |
+
when read in together with others. Therefore the overlap is used.
|
35 |
+
remove_punc: to remove all Punctuation including ',' and '.' or not
|
36 |
+
Return
|
37 |
+
--------------
|
38 |
+
List[Document]: When preprocessing pipeline is run, the output dictionary
|
39 |
+
has four objects. For the Haysatck implementation of SDG classification we,
|
40 |
+
need to use the List of Haystack Document, which can be fetched by
|
41 |
+
key = 'documents' on output.
|
42 |
+
"""
|
43 |
+
|
44 |
+
processing_pipeline = processingpipeline()
|
45 |
+
|
46 |
+
output_pre = processing_pipeline.run(file_paths = file_path,
|
47 |
+
params= {"FileConverter": {"file_path": file_path, \
|
48 |
+
"file_name": file_name},
|
49 |
+
"UdfPreProcessor": {"remove_punc": remove_punc, \
|
50 |
+
"split_by": split_by, \
|
51 |
+
"split_length":split_length,\
|
52 |
+
"split_overlap": split_overlap, \
|
53 |
+
"split_respect_sentence_boundary":split_respect_sentence_boundary}})
|
54 |
+
|
55 |
+
return output_pre
|
56 |
+
|
57 |
+
|
58 |
+
def app():
|
59 |
+
with st.container():
|
60 |
+
if 'filepath' in st.session_state:
|
61 |
+
file_name = st.session_state['filename']
|
62 |
+
file_path = st.session_state['filepath']
|
63 |
+
|
64 |
+
|
65 |
+
all_documents = runPreprocessingPipeline(file_name= file_name,
|
66 |
+
file_path= file_path, split_by= params['split_by'],
|
67 |
+
split_length= params['split_length'],
|
68 |
+
split_respect_sentence_boundary= params['split_respect_sentence_boundary'],
|
69 |
+
split_overlap= params['split_overlap'], remove_punc= params['remove_punc'])
|
70 |
+
paralist = paraLengthCheck(all_documents['documents'], 100)
|
71 |
+
df = pd.DataFrame(paralist,columns = ['text','page'])
|
72 |
+
# saving the dataframe to session state
|
73 |
+
st.session_state['key0'] = df
|
74 |
+
|
75 |
+
else:
|
76 |
+
st.info("🤔 No document found, please try to upload it at the sidebar!")
|
77 |
+
logging.warning("Terminated as no document provided")
|
appStore/indicator.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys;
|
3 |
+
sys.path.append('../utils')
|
4 |
+
|
5 |
+
#import needed libraries
|
6 |
+
import seaborn as sns
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
from utils.indicator_classifier import load_indicatorClassifier, indicator_classification
|
12 |
+
import logging
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
from utils.config import get_classifier_params
|
15 |
+
from utils.preprocessing import paraLengthCheck
|
16 |
+
from io import BytesIO
|
17 |
+
import xlsxwriter
|
18 |
+
import plotly.express as px
|
19 |
+
|
20 |
+
|
21 |
+
# Declare all the necessary variables
|
22 |
+
classifier_identifier = 'indicator'
|
23 |
+
params = get_classifier_params(classifier_identifier)
|
24 |
+
|
25 |
+
@st.cache_data
|
26 |
+
def to_excel(df,sectorlist):
|
27 |
+
len_df = len(df)
|
28 |
+
output = BytesIO()
|
29 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
30 |
+
df.to_excel(writer, index=False, sheet_name='Sheet1')
|
31 |
+
workbook = writer.book
|
32 |
+
worksheet = writer.sheets['Sheet1']
|
33 |
+
worksheet.data_validation('S2:S{}'.format(len_df),
|
34 |
+
{'validate': 'list',
|
35 |
+
'source': ['No', 'Yes', 'Discard']})
|
36 |
+
worksheet.data_validation('X2:X{}'.format(len_df),
|
37 |
+
{'validate': 'list',
|
38 |
+
'source': sectorlist + ['Blank']})
|
39 |
+
worksheet.data_validation('T2:T{}'.format(len_df),
|
40 |
+
{'validate': 'list',
|
41 |
+
'source': sectorlist + ['Blank']})
|
42 |
+
worksheet.data_validation('U2:U{}'.format(len_df),
|
43 |
+
{'validate': 'list',
|
44 |
+
'source': sectorlist + ['Blank']})
|
45 |
+
worksheet.data_validation('V2:V{}'.format(len_df),
|
46 |
+
{'validate': 'list',
|
47 |
+
'source': sectorlist + ['Blank']})
|
48 |
+
worksheet.data_validation('W2:U{}'.format(len_df),
|
49 |
+
{'validate': 'list',
|
50 |
+
'source': sectorlist + ['Blank']})
|
51 |
+
writer.save()
|
52 |
+
processed_data = output.getvalue()
|
53 |
+
return processed_data
|
54 |
+
|
55 |
+
def app():
|
56 |
+
|
57 |
+
### Main app code ###
|
58 |
+
with st.container():
|
59 |
+
|
60 |
+
if 'key1' in st.session_state:
|
61 |
+
df = st.session_state.key1
|
62 |
+
classifier = load_indicatorClassifier(classifier_name=params['model_name'])
|
63 |
+
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
64 |
+
|
65 |
+
if sum(df['Target Label'] == 'TARGET') > 100:
|
66 |
+
warning_msg = ": This might take sometime, please sit back and relax."
|
67 |
+
else:
|
68 |
+
warning_msg = ""
|
69 |
+
|
70 |
+
df = indicator_classification(haystack_doc=df,
|
71 |
+
threshold= params['threshold'])
|
72 |
+
|
73 |
+
st.session_state.key1 = df
|
74 |
+
|
75 |
+
|
76 |
+
# # st.write(df)
|
77 |
+
# threshold= params['threshold']
|
78 |
+
# truth_df = df.drop(['text'],axis=1)
|
79 |
+
# truth_df = truth_df.astype(float) >= threshold
|
80 |
+
# truth_df = truth_df.astype(str)
|
81 |
+
# categories = list(truth_df.columns)
|
82 |
+
|
83 |
+
# placeholder = {}
|
84 |
+
# for val in categories:
|
85 |
+
# placeholder[val] = dict(truth_df[val].value_counts())
|
86 |
+
# count_df = pd.DataFrame.from_dict(placeholder)
|
87 |
+
# count_df = count_df.T
|
88 |
+
# count_df = count_df.reset_index()
|
89 |
+
# # st.write(count_df)
|
90 |
+
# placeholder = []
|
91 |
+
# for i in range(len(count_df)):
|
92 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'Yes'])
|
93 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'No'])
|
94 |
+
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
95 |
+
# # st.write("Total Paragraphs: {}".format(len(df)))
|
96 |
+
# fig = px.bar(count_df, x='category', y='count',
|
97 |
+
# color='truth_value')
|
98 |
+
# # c1, c2 = st.columns([1,1])
|
99 |
+
# # with c1:
|
100 |
+
# st.plotly_chart(fig,use_container_width= True)
|
101 |
+
|
102 |
+
# truth_df['labels'] = truth_df.apply(lambda x: {i if x[i]=='True' else None for i in categories}, axis=1)
|
103 |
+
# truth_df['labels'] = truth_df.apply(lambda x: list(x['labels'] -{None}),axis=1)
|
104 |
+
# # st.write(truth_df)
|
105 |
+
# df = pd.concat([df,truth_df['labels']],axis=1)
|
106 |
+
# df['Validation'] = 'No'
|
107 |
+
# df['Sector1'] = 'Blank'
|
108 |
+
# df['Sector2'] = 'Blank'
|
109 |
+
# df['Sector3'] = 'Blank'
|
110 |
+
# df['Sector4'] = 'Blank'
|
111 |
+
# df['Sector5'] = 'Blank'
|
112 |
+
# df_xlsx = to_excel(df,categories)
|
113 |
+
# st.download_button(label='📥 Download Current Result',
|
114 |
+
# data=df_xlsx ,
|
115 |
+
# # file_name= 'file_sector.xlsx')
|
116 |
+
# else:
|
117 |
+
# st.info("🤔 No document found, please try to upload it at the sidebar!")
|
118 |
+
# logging.warning("Terminated as no document provided")
|
119 |
+
|
120 |
+
# # Creating truth value dataframe
|
121 |
+
# if 'key' in st.session_state:
|
122 |
+
# if st.session_state.key is not None:
|
123 |
+
# df = st.session_state.key
|
124 |
+
# st.markdown("###### Select the threshold for classifier ######")
|
125 |
+
# c4, c5 = st.columns([1,1])
|
126 |
+
|
127 |
+
# with c4:
|
128 |
+
# threshold = st.slider("Threshold", min_value=0.00, max_value=1.0,
|
129 |
+
# step=0.01, value=0.5,
|
130 |
+
# help = "Keep High Value if want refined result, low if dont want to miss anything" )
|
131 |
+
# sectors =set(df.columns)
|
132 |
+
# removecols = {'Validation','Sector1','Sector2','Sector3','Sector4',
|
133 |
+
# 'Sector5','text'}
|
134 |
+
# sectors = list(sectors - removecols)
|
135 |
+
|
136 |
+
# placeholder = {}
|
137 |
+
# for val in sectors:
|
138 |
+
# temp = df[val].astype(float) > threshold
|
139 |
+
# temp = temp.astype(str)
|
140 |
+
# placeholder[val] = dict(temp.value_counts())
|
141 |
+
|
142 |
+
# count_df = pd.DataFrame.from_dict(placeholder)
|
143 |
+
# count_df = count_df.T
|
144 |
+
# count_df = count_df.reset_index()
|
145 |
+
# placeholder = []
|
146 |
+
# for i in range(len(count_df)):
|
147 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'False'])
|
148 |
+
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'True'])
|
149 |
+
|
150 |
+
# count_df = pd.DataFrame(placeholder, columns = ['sector','count','truth_value'])
|
151 |
+
# fig = px.bar(count_df, x='sector', y='count',
|
152 |
+
# color='truth_value',
|
153 |
+
# height=400)
|
154 |
+
# st.write("")
|
155 |
+
# st.plotly_chart(fig)
|
156 |
+
|
157 |
+
# df['Validation'] = 'No'
|
158 |
+
# df['Sector1'] = 'Blank'
|
159 |
+
# df['Sector2'] = 'Blank'
|
160 |
+
# df['Sector3'] = 'Blank'
|
161 |
+
# df['Sector4'] = 'Blank'
|
162 |
+
# df['Sector5'] = 'Blank'
|
163 |
+
# df_xlsx = to_excel(df,sectors)
|
164 |
+
# st.download_button(label='📥 Download Current Result',
|
165 |
+
# data=df_xlsx ,
|
166 |
+
# file_name= 'file_sector.xlsx')
|