Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
from setfit import SetFitModel
|
3 |
|
4 |
-
# Load the model
|
5 |
-
model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")
|
6 |
|
7 |
-
|
8 |
-
group_dict = {
|
9 |
-
0: 'Coastal communities',
|
10 |
-
1: 'Small island developing states (SIDS)',
|
11 |
-
2: 'Landlocked countries',
|
12 |
-
3: 'Low-income households',
|
13 |
-
4: 'Informal settlements and slums',
|
14 |
-
5: 'Rural communities',
|
15 |
-
6: 'Children and youth',
|
16 |
-
7: 'Older adults and the elderly',
|
17 |
-
8: 'Women and girls',
|
18 |
-
9: 'People with pre-existing health conditions',
|
19 |
-
10: 'People with disabilities',
|
20 |
-
11: 'Small-scale farmers and subsistence agriculture',
|
21 |
-
12: 'Fisherfolk and fishing communities',
|
22 |
-
13: 'Informal sector workers',
|
23 |
-
14: 'Children with disabilities',
|
24 |
-
15: 'Remote communities',
|
25 |
-
16: 'Young adults',
|
26 |
-
17: 'Elderly population',
|
27 |
-
18: 'Urban slums',
|
28 |
-
19: 'Men and boys',
|
29 |
-
20: 'Gender non-conforming individuals',
|
30 |
-
21: 'Pregnant women and new mothers',
|
31 |
-
22: 'Mountain communities',
|
32 |
-
23: 'Riverine and flood-prone areas',
|
33 |
-
24: 'Drought-prone regions',
|
34 |
-
25: 'Indigenous peoples',
|
35 |
-
26: 'Migrants and displaced populations',
|
36 |
-
27: 'Outdoor workers',
|
37 |
-
28: 'Small-scale farmers',
|
38 |
-
29: 'Other'}
|
39 |
-
|
40 |
-
# Define prediction function
|
41 |
-
#def predict(text):
|
42 |
-
# preds = model(text)
|
43 |
-
# return group_dict[preds]
|
44 |
|
45 |
# App
|
46 |
st.title("Identify references to vulnerable groups.")
|
@@ -51,23 +13,70 @@ into national climate policies, governments can ensure equitable outcomes, promo
|
|
51 |
fostering a more sustainable and inclusive society as we navigate the challenges posed by climate change.This app allows you to identify whether a text contains any
|
52 |
references to vulnerable groups, for example when talking about policy documents.""")
|
53 |
|
|
|
|
|
54 |
|
55 |
# Create text input box
|
56 |
input_text = st.text_area(label='Please enter your text here', value="This policy has been implemented to support women.")
|
57 |
|
58 |
st.write('Prediction:', model(input_text))
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
# Select lab
|
67 |
-
#def get_label(prediction_tensor):
|
68 |
-
# print(prediction_tensor.index("1"))
|
69 |
-
#key = prediction_tensor.index(1)
|
70 |
-
#return group_dict[key]
|
71 |
-
|
72 |
-
#st.write(preds)
|
73 |
-
#st.text(get_label(preds))
|
|
|
1 |
import streamlit as st
|
2 |
from setfit import SetFitModel
|
3 |
|
|
|
|
|
4 |
|
5 |
+
####################################### Dashboard ######################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# App
|
8 |
st.title("Identify references to vulnerable groups.")
|
|
|
13 |
fostering a more sustainable and inclusive society as we navigate the challenges posed by climate change.This app allows you to identify whether a text contains any
|
14 |
references to vulnerable groups, for example when talking about policy documents.""")
|
15 |
|
16 |
+
# Document upload
|
17 |
+
uploaded_file = st.file_uploader(label, type=None, accept_multiple_files=False, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False, label_visibility="visible")
|
18 |
|
19 |
# Create text input box
|
20 |
input_text = st.text_area(label='Please enter your text here', value="This policy has been implemented to support women.")
|
21 |
|
22 |
st.write('Prediction:', model(input_text))
|
23 |
|
24 |
+
######################################### Model #########################################################
|
25 |
+
|
26 |
+
# Load the model
|
27 |
+
model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")
|
28 |
+
|
29 |
+
# Define the classes
|
30 |
+
id2label = {
|
31 |
+
0: 'Agricultural communities',
|
32 |
+
1: 'Children and Youth',
|
33 |
+
2: 'Coastal communities',
|
34 |
+
3: 'Drought-prone regions',
|
35 |
+
4: 'Economically disadvantaged communities',
|
36 |
+
5: 'Elderly population',
|
37 |
+
6: 'Ethnic minorities and indigenous people',
|
38 |
+
7: 'Informal sector workers',
|
39 |
+
8: 'Migrants and Refugees',
|
40 |
+
9: 'Other',
|
41 |
+
10: 'People with Disabilities',
|
42 |
+
11: 'Rural populations',
|
43 |
+
12: 'Sexual minorities (LGBTQI+)',
|
44 |
+
13: 'Urban populations',
|
45 |
+
14: 'Women'}
|
46 |
+
|
47 |
+
# Import the file_processing function
|
48 |
+
from file_processing.py import process_documents
|
49 |
+
|
50 |
+
# Process document to paragraphs
|
51 |
+
par_list = process_documents(uploaded_file)
|
52 |
+
|
53 |
+
# Make predictions
|
54 |
+
preds = vg_model(par_list)
|
55 |
+
|
56 |
+
# Get label names
|
57 |
+
preds_list = preds.tolist()
|
58 |
+
|
59 |
+
predictions_names=[]
|
60 |
+
|
61 |
+
# loop through each prediction
|
62 |
+
for ele in preds_list:
|
63 |
+
try:
|
64 |
+
index_of_one = ele.index(1)
|
65 |
+
except ValueError:
|
66 |
+
index_of_one = "NA"
|
67 |
+
if index_of_one != "NA":
|
68 |
+
name = id2label[index_of_one]
|
69 |
+
else:
|
70 |
+
name = "NA"
|
71 |
+
predictions_names.append(name)
|
72 |
+
|
73 |
+
# Combine the paragraphs and labels to a dataframe
|
74 |
+
df_predictions = pd.DataFrame({'Paragraph': par_list, 'Prediction': predictions_names})
|
75 |
+
|
76 |
+
# Drop all "Other" and "NA" predictions
|
77 |
+
filtered_df = df[df['Prediction'].isin(['Other', 'NA'])]
|
78 |
+
|
79 |
|
80 |
+
#####################################
|
81 |
+
st.write(df)
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|