leavoigt commited on
Commit
926da07
1 Parent(s): 197e027

Delete utils/ghg_classifier.py

Browse files
Files changed (1) hide show
  1. utils/ghg_classifier.py +0 -96
utils/ghg_classifier.py DELETED
@@ -1,96 +0,0 @@
1
- from typing import List, Tuple
2
- from typing_extensions import Literal
3
- import logging
4
- import pandas as pd
5
- from pandas import DataFrame, Series
6
- from utils.config import getconfig
7
- from utils.preprocessing import processingpipeline
8
- import streamlit as st
9
- from transformers import pipeline
10
-
11
- # Labels dictionary ###
12
- _lab_dict = {
13
- 'GHG':'GHG',
14
- 'NOT_GHG':'NON GHG TRANSPORT TARGET',
15
- 'NEGATIVE':'OTHERS',
16
- }
17
-
18
-
19
- @st.cache_resource
20
- def load_ghgClassifier(config_file:str = None, classifier_name:str = None):
21
- """
22
- loads the document classifier using haystack, where the name/path of model
23
- in HF-hub as string is used to fetch the model object.Either configfile or
24
- model should be passed.
25
- 1. https://docs.haystack.deepset.ai/reference/document-classifier-api
26
- 2. https://docs.haystack.deepset.ai/docs/document_classifier
27
- Params
28
- --------
29
- config_file: config file path from which to read the model name
30
- classifier_name: if modelname is passed, it takes a priority if not \
31
- found then will look for configfile, else raise error.
32
- Return: document classifier model
33
- """
34
- if not classifier_name:
35
- if not config_file:
36
- logging.warning("Pass either model name or config file")
37
- return
38
- else:
39
- config = getconfig(config_file)
40
- classifier_name = config.get('ghg','MODEL')
41
-
42
- logging.info("Loading ghg classifier")
43
- doc_classifier = pipeline("text-classification",
44
- model=classifier_name,
45
- top_k =1)
46
-
47
- return doc_classifier
48
-
49
-
50
- @st.cache_data
51
- def ghg_classification(haystack_doc:pd.DataFrame,
52
- threshold:float = 0.5,
53
- classifier_model:pipeline= None
54
- )->Tuple[DataFrame,Series]:
55
- """
56
- Text-Classification on the list of texts provided. Classifier provides the
57
- most appropriate label for each text. these labels are in terms of if text
58
- belongs to which particular Sustainable Devleopment Goal (SDG).
59
- Params
60
- ---------
61
- haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
62
- contains the list of paragraphs in different format,here the list of
63
- Haystack Documents is used.
64
- threshold: threshold value for the model to keep the results from classifier
65
- classifiermodel: you can pass the classifier model directly,which takes priority
66
- however if not then looks for model in streamlit session.
67
- In case of streamlit avoid passing the model directly.
68
- Returns
69
- ----------
70
- df: Dataframe with two columns['SDG:int', 'text']
71
- x: Series object with the unique SDG covered in the document uploaded and
72
- the number of times it is covered/discussed/count_of_paragraphs.
73
- """
74
- logging.info("Working on GHG Extraction")
75
- haystack_doc['GHG Label'] = 'NA'
76
- haystack_doc['GHG Score'] = 0.0
77
- # applying GHG Identifier to only 'Target' paragraphs.
78
- temp = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
79
- temp = temp.reset_index(drop=True)
80
- df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
81
- df = df.reset_index(drop=True)
82
-
83
- if not classifier_model:
84
- classifier_model = st.session_state['ghg_classifier']
85
-
86
- results = classifier_model(list(temp.text))
87
- labels_= [(l[0]['label'],l[0]['score']) for l in results]
88
- temp['GHG Label'],temp['GHG Score'] = zip(*labels_)
89
- temp['GHG Label'] = temp['GHG Label'].apply(lambda x: _lab_dict[x])
90
- # merge back Target and non-Target dataframe
91
- df = pd.concat([df,temp])
92
- df = df.reset_index(drop =True)
93
- df['GHG Score'] = df['GHG Score'].round(2)
94
- df.index += 1
95
-
96
- return df