# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from utils.vulnerability_classifier import load_vulnerabilityClassifier, vulnerability_classification import logging logger = logging.getLogger(__name__) from utils.config import get_classifier_params from utils.preprocessing import paraLengthCheck from io import BytesIO import xlsxwriter import plotly.express as px from utils.vulnerability_classifier import label_dict # Declare all the necessary variables classifier_identifier = 'vulnerability' params = get_classifier_params(classifier_identifier) @st.cache_data def to_excel(df,sectorlist): len_df = len(df) output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, index=False, sheet_name='Sheet1') workbook = writer.book worksheet = writer.sheets['Sheet1'] worksheet.data_validation('S2:S{}'.format(len_df), {'validate': 'list', 'source': ['No', 'Yes', 'Discard']}) worksheet.data_validation('X2:X{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('T2:T{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('U2:U{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('V2:V{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('W2:U{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) writer.save() processed_data = output.getvalue() return processed_data def app(): ### Main app code ### with st.container(): # If a document has been processed if 'key0' in st.session_state: # Run vulnerability classifier df = st.session_state.key0 classifier = load_vulnerabilityClassifier(classifier_name=params['model_name']) st.session_state['{}_classifier'.format(classifier_identifier)] = classifier # Get the predictions df = vulnerability_classification(haystack_doc=df, threshold= params['threshold']) # Filter the dataframe to only show the paragraphs with references df_filtered = df[df['Vulnerability Label'].apply(lambda x: 'Other' not in x)] # Store df in session state with key1 st.session_state.key1 = df_filtered def vulnerability_display(): # Assign dataframe a name df_vul = st.session_state['key0'] #st.write(df_vul) # Header st.subheader("Explore references to vulnerable groups:") col1, col2 = st.columns([1,1]) with col1: # Text num_paragraphs = len(df_vul['Vulnerability Label']) num_references = df_vul['Vulnerability Label'].apply(lambda x: 'Other' not in x).sum() st.markdown(f"""