|
import streamlit as st |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics import r2_score |
|
|
|
st.title("Fit Your Data") |
|
|
|
default_data = { |
|
"X": [1, 2, 3, 4, 5], |
|
"Y": [2.2, 4.4, 6.5, 8.0, 10.1], |
|
"Select": [True, True, True, True, True] |
|
} |
|
data = pd.DataFrame(default_data) |
|
|
|
with st.sidebar: |
|
st.subheader("Enter Your Data") |
|
user_data = st.data_editor(data, num_rows="dynamic", key="data_editor") |
|
xlabel = st.text_input("X label", "X-axis") |
|
ylabel = st.text_input("Y label", "Y-axis") |
|
fit_type = st.radio( |
|
"Choose the Type of Fit", |
|
options=["Logarithmic", "Linear", "Linearithmic", "Quadratic", "Cubic", "Exponential"], |
|
index=0 |
|
) |
|
|
|
try: |
|
selected_data = user_data[user_data["Select"]] |
|
x = np.array(selected_data["X"], dtype=float) |
|
y = np.array(selected_data["Y"], dtype=float) |
|
|
|
if len(x) < 2 and len(y) < 2: |
|
st.warning("Please enter at least 2 data points.") |
|
st.stop() |
|
except ValueError: |
|
st.error("Invalid data entered. Please ensure all values are numeric.") |
|
st.stop() |
|
|
|
|
|
if fit_type == "Logarithmic": |
|
try: |
|
log_x = np.log(x) |
|
coefficients = np.polyfit(log_x, y , 1) |
|
y_fit = coefficients[0] * log_x + coefficients[1] |
|
r2 = r2_score(y, y_fit) |
|
equation = f"y = {coefficients[0]:.4f}*log(x) + {coefficients[1]:.4f}" |
|
except ValueError: |
|
st.error("Logarithmic fit failed. Ensure all X values are positive.") |
|
st.stop() |
|
|
|
elif fit_type == "Linear": |
|
degree = 1 |
|
coefficients = np.polyfit(x, y, degree) |
|
y_fit = np.polyval(coefficients, x) |
|
r2 = r2_score(y, y_fit) |
|
equation = f"y = {coefficients[0]:.4f}*x + {coefficients[1]:.4f}" |
|
|
|
elif fit_type == "Linearithmic": |
|
try: |
|
x_log_x = x * np.log(x) |
|
A = np.column_stack((x_log_x, x, np.ones_like(x))) |
|
coefficients, _, _, _ = np.linalg.lstsq(A, y, rcond=None) |
|
a, b, c = coefficients |
|
y_fit = a * x_log_x + b * x + c |
|
r2 = r2_score(y, y_fit) |
|
equation = f"y = {a:.4f}*x*log(x) + {b:.4f}*x + {c:.4f}" |
|
except ValueError: |
|
st.error("Linearithmic fir failed. Ensure all X values are positive.") |
|
st.stop() |
|
|
|
elif fit_type == "Quadratic": |
|
degree = 2 |
|
coefficients = np.polyfit(x, y, degree) |
|
y_fit = np.polyval(coefficients, x) |
|
r2 = r2_score(y, y_fit) |
|
equation = f"y = {coefficients[0]:.4f}*x² + {coefficients[1]:.4f}*x + {coefficients[2]:.4f}" |
|
|
|
elif fit_type == "Cubic": |
|
degree = 3 |
|
coefficients = np.polyfit(x, y, degree) |
|
y_fit = np.polyval(coefficients, x) |
|
r2 = r2_score(y, y_fit) |
|
equation = f"y = {coefficients[0]:.4f}*x³ + {coefficients[1]:.4f}*x² + {coefficients[2]:.4f}*x + {coefficients[3]:.4f}" |
|
|
|
elif fit_type == "Exponential": |
|
try: |
|
log_y = np.log(y) |
|
coefficients = np.polyfit(x, log_y, 1) |
|
a = np.exp(coefficients[1]) |
|
b = coefficients[0] |
|
y_fit = a * np.exp(b * x) |
|
r2 = r2_score(y, y_fit) |
|
equation = f"y = {a:.4f}*exp({b:.4f}*x)" |
|
except ValueError: |
|
st.error("Exponential fit failed. Ensure all Y values are positive.") |
|
st.stop() |
|
|
|
x_smooth = np.linspace(min(x), max(x), 500) |
|
if fit_type == "Logarithmic": |
|
y_smooth = coefficients[0] * np.log(x_smooth) + coefficients[1] |
|
elif fit_type == "Linearithmic": |
|
y_smooth = a * x_smooth * np.log(x_smooth) + b * x_smooth + c |
|
elif fit_type == "Exponential": |
|
y_smooth = a * np.exp(b * x_smooth) |
|
else: |
|
y_smooth = np.polyval(coefficients, x_smooth) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
ax.scatter(x, y, color="red", label="Original Data") |
|
ax.plot(x_smooth, y_smooth, color="blue", label=f"{fit_type} Fit (R²={r2:.4f})") |
|
ax.set_xlabel(xlabel) |
|
ax.set_ylabel(ylabel) |
|
ax.legend() |
|
ax.set_title(equation) |
|
|
|
st.pyplot(fig) |
|
|
|
st.write(f"**Fitted Equation**: {equation}") |
|
st.write(f"**R² Value**: {r2:.6f}") |