Init Repo
Browse files- Home.py +16 -0
- pages/1_FitInOne.py +118 -0
- pages/2_Chatbot.py +44 -0
- requirements.txt +5 -0
Home.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="Hello",
|
5 |
+
page_icon="👋",
|
6 |
+
)
|
7 |
+
|
8 |
+
st.write("# Welcome to SPACE! 👋")
|
9 |
+
|
10 |
+
st.sidebar.success("Select a demo above.")
|
11 |
+
|
12 |
+
st.markdown(
|
13 |
+
"""
|
14 |
+
Hello, a simple demo from SPACE.
|
15 |
+
"""
|
16 |
+
)
|
pages/1_FitInOne.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.metrics import r2_score
|
6 |
+
|
7 |
+
st.title("Fit Your Data")
|
8 |
+
|
9 |
+
default_data = {
|
10 |
+
"X": [1, 2, 3, 4, 5],
|
11 |
+
"Y": [2.2, 4.4, 6.5, 8.0, 10.1],
|
12 |
+
"Select": [True, True, True, True, True]
|
13 |
+
}
|
14 |
+
data = pd.DataFrame(default_data)
|
15 |
+
|
16 |
+
with st.sidebar:
|
17 |
+
st.subheader("Enter Your Data")
|
18 |
+
user_data = st.data_editor(data, num_rows="dynamic", key="data_editor")
|
19 |
+
fit_type = st.radio(
|
20 |
+
"Choose the Type of Fit",
|
21 |
+
options=["Logarithmic", "Linear", "Linearithmic", "Quadratic", "Cubic", "Exponential"],
|
22 |
+
index=0
|
23 |
+
)
|
24 |
+
|
25 |
+
try:
|
26 |
+
selected_data = user_data[user_data["Select"]]
|
27 |
+
x = np.array(selected_data["X"], dtype=float)
|
28 |
+
y = np.array(selected_data["Y"], dtype=float)
|
29 |
+
|
30 |
+
if len(x) < 2 and len(y) < 2:
|
31 |
+
st.warning("Please enter at least 2 data points.")
|
32 |
+
st.stop()
|
33 |
+
except ValueError:
|
34 |
+
st.error("Invalid data entered. Please ensure all values are numeric.")
|
35 |
+
st.stop()
|
36 |
+
|
37 |
+
|
38 |
+
if fit_type == "Logarithmic":
|
39 |
+
try:
|
40 |
+
log_x = np.log(x)
|
41 |
+
coefficients = np.polyfit(log_x, y , 1)
|
42 |
+
y_fit = coefficients[0] * log_x + coefficients[1]
|
43 |
+
r2 = r2_score(y, y_fit)
|
44 |
+
equation = f"y = {coefficients[0]:.2f}*log(x) + {coefficients[1]:.2f}"
|
45 |
+
except ValueError:
|
46 |
+
st.error("Logarithmic fit failed. Ensure all X values are positive.")
|
47 |
+
st.stop()
|
48 |
+
|
49 |
+
elif fit_type == "Linear":
|
50 |
+
degree = 1
|
51 |
+
coefficients = np.polyfit(x, y, degree)
|
52 |
+
y_fit = np.polyval(coefficients, x)
|
53 |
+
r2 = r2_score(y, y_fit)
|
54 |
+
equation = f"y = {coefficients[0]:.2f}*x + {coefficients[1]:.2f}"
|
55 |
+
|
56 |
+
elif fit_type == "Linearithmic":
|
57 |
+
try:
|
58 |
+
x_log_x = x * np.log(x)
|
59 |
+
A = np.column_stack((x_log_x, x, np.ones_like(x)))
|
60 |
+
coefficients, _, _, _ = np.linalg.lstsq(A, y, rcond=None)
|
61 |
+
a, b, c = coefficients
|
62 |
+
y_fit = a * x_log_x + b * x + c
|
63 |
+
r2 = r2_score(y, y_fit)
|
64 |
+
equation = f"y = {a:.2f}*x*log(x) + {b:.2f}*x + {c:.2f}"
|
65 |
+
except ValueError:
|
66 |
+
st.error("Linearithmic fir failed. Ensure all X values are positive.")
|
67 |
+
st.stop()
|
68 |
+
|
69 |
+
elif fit_type == "Quadratic":
|
70 |
+
degree = 2
|
71 |
+
coefficients = np.polyfit(x, y, degree)
|
72 |
+
y_fit = np.polyval(coefficients, x)
|
73 |
+
r2 = r2_score(y, y_fit)
|
74 |
+
equation = f"y = {coefficients[0]:.2f}*x² + {coefficients[1]:.2f}*x + {coefficients[2]:.2f}"
|
75 |
+
|
76 |
+
elif fit_type == "Cubic":
|
77 |
+
degree = 3
|
78 |
+
coefficients = np.polyfit(x, y, degree)
|
79 |
+
y_fit = np.polyval(coefficients, x)
|
80 |
+
r2 = r2_score(y, y_fit)
|
81 |
+
equation = f"y = {coefficients[0]:.2f}*x³ + {coefficients[1]:.2f}*x² + {coefficients[2]:.2f}*x + {coefficients[3]:.2f}"
|
82 |
+
|
83 |
+
elif fit_type == "Exponential":
|
84 |
+
try:
|
85 |
+
log_y = np.log(y)
|
86 |
+
coefficients = np.polyfit(x, log_y, 1)
|
87 |
+
a = np.exp(coefficients[1])
|
88 |
+
b = coefficients[0]
|
89 |
+
y_fit = a * np.exp(b * x)
|
90 |
+
r2 = r2_score(y, y_fit)
|
91 |
+
equation = f"y = {a:.2f}*exp({b:.2f}*x)"
|
92 |
+
except ValueError:
|
93 |
+
st.error("Exponential fit failed. Ensure all Y values are positive.")
|
94 |
+
st.stop()
|
95 |
+
|
96 |
+
x_smooth = np.linspace(min(x), max(x), 500)
|
97 |
+
if fit_type == "Logarithmic":
|
98 |
+
y_smooth = coefficients[0] * np.log(x_smooth) + coefficients[1]
|
99 |
+
elif fit_type == "Linearithmic":
|
100 |
+
y_smooth = a * x_smooth * np.log(x_smooth) + b * x_smooth + c
|
101 |
+
elif fit_type == "Exponential":
|
102 |
+
y_smooth = a * np.exp(b * x_smooth)
|
103 |
+
else:
|
104 |
+
y_smooth = np.polyval(coefficients, x_smooth)
|
105 |
+
|
106 |
+
|
107 |
+
fig, ax = plt.subplots()
|
108 |
+
ax.scatter(x, y, color="red", label="Original Data")
|
109 |
+
ax.plot(x_smooth, y_smooth, color="blue", label=f"{fit_type} Fit (R²={r2:.2f})")
|
110 |
+
ax.set_xlabel("X-axis")
|
111 |
+
ax.set_ylabel("Y-axis")
|
112 |
+
ax.legend()
|
113 |
+
ax.set_title("Fit")
|
114 |
+
|
115 |
+
st.pyplot(fig)
|
116 |
+
|
117 |
+
st.write(f"**Fitted Equation**: {equation}")
|
118 |
+
st.write(f"**R² Value**: {r2:.4f}")
|
pages/2_Chatbot.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
with st.sidebar:
|
5 |
+
IFC_API_KEY = st.text_input("HF access tokens", key="chat_bot_api_key", type="password")
|
6 |
+
model = st.radio(
|
7 |
+
"Choose a model to chat with",
|
8 |
+
["Qwen/Qwen2.5-72B-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "Qwen/QwQ-32B-Preview"],
|
9 |
+
captions=[
|
10 |
+
"By Qwen",
|
11 |
+
"By Meta",
|
12 |
+
"By Qwen",
|
13 |
+
],
|
14 |
+
)
|
15 |
+
temperature = st.slider("Temperature", 0.01, 0.99, 0.5)
|
16 |
+
top_p = st.slider("Top_p", 0.01, 0.99, 0.7)
|
17 |
+
max_tokens = st.slider("Max Tokens", 128, 4096, 2048)
|
18 |
+
|
19 |
+
st.title("💬 Chatbot")
|
20 |
+
st.caption(" A HF chatbot powered by HF")
|
21 |
+
if "messages" not in st.session_state:
|
22 |
+
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
|
23 |
+
|
24 |
+
for msg in st.session_state.messages:
|
25 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
26 |
+
|
27 |
+
if prompt := st.chat_input():
|
28 |
+
if not IFC_API_KEY:
|
29 |
+
st.info("Please add your access token to continue.")
|
30 |
+
st.stop()
|
31 |
+
|
32 |
+
client = OpenAI(api_key=IFC_API_KEY)
|
33 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
34 |
+
st.chat_message("user").write(prompt)
|
35 |
+
response = client.chat.completions.create(
|
36 |
+
model=model,
|
37 |
+
messages = st.session_state.messages,
|
38 |
+
temperature = temperature,
|
39 |
+
max_tokens = max_tokens,
|
40 |
+
top_p = top_p,
|
41 |
+
)
|
42 |
+
msg = response.choices[0].message.content
|
43 |
+
st.session_state.messages.append({"role": "assistant", "content": msg})
|
44 |
+
st.chat_message("assistant").write(msg)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
scikitlearn
|
5 |
+
openai
|