lee-ite commited on
Commit
9198284
·
verified ·
1 Parent(s): 4818c91
Files changed (4) hide show
  1. Home.py +16 -0
  2. pages/1_FitInOne.py +118 -0
  3. pages/2_Chatbot.py +44 -0
  4. requirements.txt +5 -0
Home.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(
4
+ page_title="Hello",
5
+ page_icon="👋",
6
+ )
7
+
8
+ st.write("# Welcome to SPACE! 👋")
9
+
10
+ st.sidebar.success("Select a demo above.")
11
+
12
+ st.markdown(
13
+ """
14
+ Hello, a simple demo from SPACE.
15
+ """
16
+ )
pages/1_FitInOne.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ from sklearn.metrics import r2_score
6
+
7
+ st.title("Fit Your Data")
8
+
9
+ default_data = {
10
+ "X": [1, 2, 3, 4, 5],
11
+ "Y": [2.2, 4.4, 6.5, 8.0, 10.1],
12
+ "Select": [True, True, True, True, True]
13
+ }
14
+ data = pd.DataFrame(default_data)
15
+
16
+ with st.sidebar:
17
+ st.subheader("Enter Your Data")
18
+ user_data = st.data_editor(data, num_rows="dynamic", key="data_editor")
19
+ fit_type = st.radio(
20
+ "Choose the Type of Fit",
21
+ options=["Logarithmic", "Linear", "Linearithmic", "Quadratic", "Cubic", "Exponential"],
22
+ index=0
23
+ )
24
+
25
+ try:
26
+ selected_data = user_data[user_data["Select"]]
27
+ x = np.array(selected_data["X"], dtype=float)
28
+ y = np.array(selected_data["Y"], dtype=float)
29
+
30
+ if len(x) < 2 and len(y) < 2:
31
+ st.warning("Please enter at least 2 data points.")
32
+ st.stop()
33
+ except ValueError:
34
+ st.error("Invalid data entered. Please ensure all values are numeric.")
35
+ st.stop()
36
+
37
+
38
+ if fit_type == "Logarithmic":
39
+ try:
40
+ log_x = np.log(x)
41
+ coefficients = np.polyfit(log_x, y , 1)
42
+ y_fit = coefficients[0] * log_x + coefficients[1]
43
+ r2 = r2_score(y, y_fit)
44
+ equation = f"y = {coefficients[0]:.2f}*log(x) + {coefficients[1]:.2f}"
45
+ except ValueError:
46
+ st.error("Logarithmic fit failed. Ensure all X values are positive.")
47
+ st.stop()
48
+
49
+ elif fit_type == "Linear":
50
+ degree = 1
51
+ coefficients = np.polyfit(x, y, degree)
52
+ y_fit = np.polyval(coefficients, x)
53
+ r2 = r2_score(y, y_fit)
54
+ equation = f"y = {coefficients[0]:.2f}*x + {coefficients[1]:.2f}"
55
+
56
+ elif fit_type == "Linearithmic":
57
+ try:
58
+ x_log_x = x * np.log(x)
59
+ A = np.column_stack((x_log_x, x, np.ones_like(x)))
60
+ coefficients, _, _, _ = np.linalg.lstsq(A, y, rcond=None)
61
+ a, b, c = coefficients
62
+ y_fit = a * x_log_x + b * x + c
63
+ r2 = r2_score(y, y_fit)
64
+ equation = f"y = {a:.2f}*x*log(x) + {b:.2f}*x + {c:.2f}"
65
+ except ValueError:
66
+ st.error("Linearithmic fir failed. Ensure all X values are positive.")
67
+ st.stop()
68
+
69
+ elif fit_type == "Quadratic":
70
+ degree = 2
71
+ coefficients = np.polyfit(x, y, degree)
72
+ y_fit = np.polyval(coefficients, x)
73
+ r2 = r2_score(y, y_fit)
74
+ equation = f"y = {coefficients[0]:.2f}*x² + {coefficients[1]:.2f}*x + {coefficients[2]:.2f}"
75
+
76
+ elif fit_type == "Cubic":
77
+ degree = 3
78
+ coefficients = np.polyfit(x, y, degree)
79
+ y_fit = np.polyval(coefficients, x)
80
+ r2 = r2_score(y, y_fit)
81
+ equation = f"y = {coefficients[0]:.2f}*x³ + {coefficients[1]:.2f}*x² + {coefficients[2]:.2f}*x + {coefficients[3]:.2f}"
82
+
83
+ elif fit_type == "Exponential":
84
+ try:
85
+ log_y = np.log(y)
86
+ coefficients = np.polyfit(x, log_y, 1)
87
+ a = np.exp(coefficients[1])
88
+ b = coefficients[0]
89
+ y_fit = a * np.exp(b * x)
90
+ r2 = r2_score(y, y_fit)
91
+ equation = f"y = {a:.2f}*exp({b:.2f}*x)"
92
+ except ValueError:
93
+ st.error("Exponential fit failed. Ensure all Y values are positive.")
94
+ st.stop()
95
+
96
+ x_smooth = np.linspace(min(x), max(x), 500)
97
+ if fit_type == "Logarithmic":
98
+ y_smooth = coefficients[0] * np.log(x_smooth) + coefficients[1]
99
+ elif fit_type == "Linearithmic":
100
+ y_smooth = a * x_smooth * np.log(x_smooth) + b * x_smooth + c
101
+ elif fit_type == "Exponential":
102
+ y_smooth = a * np.exp(b * x_smooth)
103
+ else:
104
+ y_smooth = np.polyval(coefficients, x_smooth)
105
+
106
+
107
+ fig, ax = plt.subplots()
108
+ ax.scatter(x, y, color="red", label="Original Data")
109
+ ax.plot(x_smooth, y_smooth, color="blue", label=f"{fit_type} Fit (R²={r2:.2f})")
110
+ ax.set_xlabel("X-axis")
111
+ ax.set_ylabel("Y-axis")
112
+ ax.legend()
113
+ ax.set_title("Fit")
114
+
115
+ st.pyplot(fig)
116
+
117
+ st.write(f"**Fitted Equation**: {equation}")
118
+ st.write(f"**R² Value**: {r2:.4f}")
pages/2_Chatbot.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from openai import OpenAI
2
+ import streamlit as st
3
+
4
+ with st.sidebar:
5
+ IFC_API_KEY = st.text_input("HF access tokens", key="chat_bot_api_key", type="password")
6
+ model = st.radio(
7
+ "Choose a model to chat with",
8
+ ["Qwen/Qwen2.5-72B-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "Qwen/QwQ-32B-Preview"],
9
+ captions=[
10
+ "By Qwen",
11
+ "By Meta",
12
+ "By Qwen",
13
+ ],
14
+ )
15
+ temperature = st.slider("Temperature", 0.01, 0.99, 0.5)
16
+ top_p = st.slider("Top_p", 0.01, 0.99, 0.7)
17
+ max_tokens = st.slider("Max Tokens", 128, 4096, 2048)
18
+
19
+ st.title("💬 Chatbot")
20
+ st.caption(" A HF chatbot powered by HF")
21
+ if "messages" not in st.session_state:
22
+ st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
23
+
24
+ for msg in st.session_state.messages:
25
+ st.chat_message(msg["role"]).write(msg["content"])
26
+
27
+ if prompt := st.chat_input():
28
+ if not IFC_API_KEY:
29
+ st.info("Please add your access token to continue.")
30
+ st.stop()
31
+
32
+ client = OpenAI(api_key=IFC_API_KEY)
33
+ st.session_state.messages.append({"role": "user", "content": prompt})
34
+ st.chat_message("user").write(prompt)
35
+ response = client.chat.completions.create(
36
+ model=model,
37
+ messages = st.session_state.messages,
38
+ temperature = temperature,
39
+ max_tokens = max_tokens,
40
+ top_p = top_p,
41
+ )
42
+ msg = response.choices[0].message.content
43
+ st.session_state.messages.append({"role": "assistant", "content": msg})
44
+ st.chat_message("assistant").write(msg)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit
2
+ matplotlib
3
+ numpy
4
+ scikitlearn
5
+ openai