import streamlit as st import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import r2_score st.title("Compare Your Algorithm") default_dataOne = { "X": [1, 2, 3, 4, 5], "Y": [2.2, 4.4, 6.5, 8.0, 10.1], "Select": [True, True, True, True, True] } default_dataTwo = { "X": [1, 10, 100, 1000, 10000], "Y": [3.3, 6.6, 12.21, 24.84, 48.25], "Select": [True, True, True, True, True] } dataOne = pd.DataFrame(default_dataOne) dataTwo = pd.DataFrame(default_dataTwo) xlabel = st.text_input("X-axis", "X") ylabel = st.text_input("Y-axis", "Y") col1, col2 = st.columns(2) with col1: st.subheader("Enter Your Data One") cola, colb = st.columns(2) with cola: user_dataOne = st.data_editor(dataOne, num_rows="dynamic", key="data_editor_one") with colb: fit_typeOne = st.radio( "Choose the Type of Fit", options=["Logarithmic", "Linear", "Linearithmic", "Quadratic", "Cubic", "Exponential"], index=1, key="one" ) with col2: st.subheader("Enter Your Data Two") colc, cold = st.columns(2) with colc: user_dataTwo = st.data_editor(dataTwo, num_rows="dynamic", key="data_editor_two") with cold: fit_typeTwo = st.radio( "Choose the Type of Fit", options=["Logarithmic", "Linear", "Linearithmic", "Quadratic", "Cubic", "Exponential"], index=0, key="two" ) try: selected_dataOne = user_dataOne[user_dataOne["Select"]] x = np.array(selected_dataOne["X"], dtype=float) y = np.array(selected_dataOne["Y"], dtype=float) if len(x) < 2 and len(y) < 2: st.warning("Please enter at least 2 data points.") st.stop() except ValueError: st.error("Invalid data entered. Please ensure all values are numeric.") st.stop() try: selected_dataTwo = user_dataTwo[user_dataTwo["Select"]] u = np.array(selected_dataTwo["X"], dtype=float) v = np.array(selected_dataTwo["Y"], dtype=float) if len(u) < 2 and len(v) < 2: st.warning("Please enter at least 2 data points.") st.stop() except ValueError: st.error("Invalid data entered. Please ensure all values are numeric.") st.stop() if fit_typeOne == "Logarithmic": try: log_x = np.log(x) coefficients = np.polyfit(log_x, y , 1) y_fit = coefficients[0] * log_x + coefficients[1] r2 = r2_score(y, y_fit) equation = f"y = {coefficients[0]:.4f}*log(x) + {coefficients[1]:.4f}" except ValueError: st.error("Logarithmic fit failed. Ensure all X values are positive.") st.stop() elif fit_typeOne == "Linear": degree = 1 coefficients = np.polyfit(x, y, degree) y_fit = np.polyval(coefficients, x) r2 = r2_score(y, y_fit) equation = f"y = {coefficients[0]:.4f}*x + {coefficients[1]:.4f}" elif fit_typeOne == "Linearithmic": try: x_log_x = x * np.log(x) A = np.column_stack((x_log_x, x, np.ones_like(x))) coefficients, _, _, _ = np.linalg.lstsq(A, y, rcond=None) a, b, c = coefficients y_fit = a * x_log_x + b * x + c r2 = r2_score(y, y_fit) equation = f"y = {a:.4f}*x*log(x) + {b:.4f}*x + {c:.4f}" except ValueError: st.error("Linearithmic fir failed. Ensure all X values are positive.") st.stop() elif fit_typeOne == "Quadratic": degree = 2 coefficients = np.polyfit(x, y, degree) y_fit = np.polyval(coefficients, x) r2 = r2_score(y, y_fit) equation = f"y = {coefficients[0]:.4f}*x² + {coefficients[1]:.4f}*x + {coefficients[2]:.4f}" elif fit_typeOne == "Cubic": degree = 3 coefficients = np.polyfit(x, y, degree) y_fit = np.polyval(coefficients, x) r2 = r2_score(y, y_fit) equation = f"y = {coefficients[0]:.4f}*x³ + {coefficients[1]:.4f}*x² + {coefficients[2]:.4f}*x + {coefficients[3]:.4f}" elif fit_typeOne == "Exponential": try: log_y = np.log(y) coefficients = np.polyfit(x, log_y, 1) a = np.exp(coefficients[1]) b = coefficients[0] y_fit = a * np.exp(b * x) r2 = r2_score(y, y_fit) equation = f"y = {a:.4f}*exp({b:.4f}*x)" except ValueError: st.error("Exponential fit failed. Ensure all Y values are positive.") st.stop() if fit_typeTwo == "Logarithmic": try: log_u = np.log(u) coefficients_Two = np.polyfit(log_u, v , 1) v_fit = coefficients_Two[0] * log_u + coefficients_Two[1] r2_Two = r2_score(v, v_fit) equation_Two = f"y = {coefficients_Two[0]:.4f}*log(x) + {coefficients_Two[1]:.4f}" except ValueError: st.error("Logarithmic fit failed. Ensure all X values are positive.") st.stop() elif fit_typeTwo == "Linear": degree_Two = 1 coefficients_Two = np.polyfit(u, v, degree_Two) v_fit = np.polyval(coefficients_Two, u) r2_Two = r2_score(v, v_fit) equation_Two = f"y = {coefficients_Two[0]:.4f}*x + {coefficients_Two[1]:.4f}" elif fit_typeTwo == "Linearithmic": try: u_log_u = u * np.log(u) B = np.column_stack((u_log_u, u, np.ones_like(u))) coefficients_Two, _, _, _ = np.linalg.lstsq(B, v, rcond=None) d, e, f = coefficients_Two v_fit = d * u_log_u + e * u + f r2_Two = r2_score(v, v_fit) equation_Two = f"y = {d:.4f}*x*log(x) + {e:.4f}*x + {f:.4f}" except ValueError: st.error("Linearithmic fir failed. Ensure all X values are positive.") st.stop() elif fit_typeTwo == "Quadratic": degree_Two = 2 coefficients_Two = np.polyfit(u, v, degree_Two) v_fit = np.polyval(coefficients_Two, u) r2_Two = r2_score(v, v_fit) equation_Two = f"y = {coefficients_Two[0]:.4f}*x² + {coefficients_Two[1]:.4f}*x + {coefficients_Two[2]:.4f}" elif fit_typeTwo == "Cubic": degree_Two = 3 coefficients_Two = np.polyfit(u, v, degree_Two) v_fit = np.polyval(coefficients_Two, u) r2_Two = r2_score(v, v_fit) equation_Two = f"y = {coefficients_Two[0]:.4f}*x³ + {coefficients_Two[1]:.4f}*x² + {coefficients_Two[2]:.4f}*x + {coefficients_Two[3]:.4f}" elif fit_typeTwo == "Exponential": try: log_v = np.log(v) coefficients_Two = np.polyfit(u, log_v, 1) d = np.exp(coefficients_Two[1]) e = coefficients_Two[0] v_fit = d * np.exp(e * u) r2_Two = r2_score(v, v_fit) equation_Two = f"y = {d:.4f}*exp({e:.4f}*x)" except ValueError: st.error("Exponential fit failed. Ensure all Y values are positive.") st.stop() minimum = min(min(x), min(u)) maximum = max(max(x), max(u)) x_smooth = np.linspace(minimum, maximum, 500) if fit_typeOne == "Logarithmic": y_smooth = coefficients[0] * np.log(x_smooth) + coefficients[1] elif fit_typeOne == "Linearithmic": y_smooth = a * x_smooth * np.log(x_smooth) + b * x_smooth + c elif fit_typeOne == "Exponential": y_smooth = a * np.exp(b * x_smooth) else: y_smooth = np.polyval(coefficients, x_smooth) u_smooth = np.linspace(minimum, maximum, 500) if fit_typeTwo == "Logarithmic": v_smooth = coefficients_Two[0] * np.log(u_smooth) + coefficients_Two[1] elif fit_typeTwo == "Linearithmic": v_smooth = d * u_smooth * np.log(u_smooth) + e * u_smooth + f elif fit_typeTwo == "Exponential": v_smooth = d * np.exp(e * u_smooth) else: v_smooth = np.polyval(coefficients_Two, u_smooth) fig, ax = plt.subplots() ax.scatter(x, y, color="red", label="Original Data One") ax.scatter(u, v, color="blue", label="Original Data Two") ax.plot(x_smooth, y_smooth, color="pink", label=f"{fit_typeOne} Fit (R²={r2:.4f})") ax.plot(u_smooth, v_smooth, color="purple", label=f"{fit_typeTwo} Fit (R²={r2_Two:.4f})") ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.legend() ax.set_title("fit") st.pyplot(fig) st.write(f"**Fitted Equation One**: {equation}") st.write(f"**R² Value One**: {r2:.6f}") st.write(f"**Fitted Equation Two**: {equation_Two}") st.write(f"**R² Value Two**: {r2_Two:.6f}")