Spaces:
Runtime error
Runtime error
File size: 16,042 Bytes
7d60ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
from __future__ import annotations
import gradio as gr
import os
import cv2
import numpy as np
from PIL import Image
from moviepy.editor import *
from share_btn import community_icon_html, loading_icon_html, share_js
import pathlib
import shlex
import subprocess
if os.getenv('SYSTEM') == 'spaces':
with open('patch') as f:
subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet')
base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/'
names = [
'body_pose_model.pth',
'dpt_hybrid-midas-501f0c75.pt',
'hand_pose_model.pth',
'mlsd_large_512_fp32.pth',
'mlsd_tiny_512_fp32.pth',
'network-bsds500.pth',
'upernet_global_small.pth',
]
for name in names:
command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}'
out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}')
if out_path.exists():
continue
subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')
from model import (DEFAULT_BASE_MODEL_FILENAME, DEFAULT_BASE_MODEL_REPO,
DEFAULT_BASE_MODEL_URL, Model)
model = Model()
def controlnet(i, prompt, control_task, seed_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold):
img= Image.open(i)
np_img = np.array(img)
a_prompt = "best quality, extremely detailed"
n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
num_samples = 1
image_resolution = 512
detect_resolution = 512
eta = 0.0
#low_threshold = 100
#high_threshold = 200
#value_threshold = 0.1
#distance_threshold = 0.1
#bg_threshold = 0.4
if control_task == 'Canny':
result = model.process_canny(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, ddim_steps, scale, seed_in, eta, low_threshold, high_threshold)
elif control_task == 'Depth':
result = model.process_depth(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
elif control_task == 'Hed':
result = model.process_hed(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
elif control_task == 'Hough':
result = model.process_hough(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, value_threshold,
distance_threshold)
elif control_task == 'Normal':
result = model.process_normal(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, bg_threshold)
elif control_task == 'Pose':
result = model.process_pose(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
elif control_task == 'Scribble':
result = model.process_scribble(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, ddim_steps, scale, seed_in, eta)
elif control_task == 'Seg':
result = model.process_seg(np_img, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
#print(result[0])
processor_im = Image.fromarray(result[0])
processor_im.save("process_" + control_task + "_" + str(i) + ".jpeg")
im = Image.fromarray(result[1])
im.save("your_file" + str(i) + ".jpeg")
return "your_file" + str(i) + ".jpeg", "process_" + control_task + "_" + str(i) + ".jpeg"
def change_task_options(task):
if task == "Canny" :
return canny_opt.update(visible=True), hough_opt.update(visible=False), normal_opt.update(visible=False)
elif task == "Hough" :
return canny_opt.update(visible=False),hough_opt.update(visible=True), normal_opt.update(visible=False)
elif task == "Normal" :
return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=True)
else :
return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=False)
def get_frames(video_in):
frames = []
#resize the video
clip = VideoFileClip(video_in)
#check fps
if clip.fps > 30:
print("vide rate is over 30, resetting to 30")
clip_resized = clip.resize(height=512)
clip_resized.write_videofile("video_resized.mp4", fps=30)
else:
print("video rate is OK")
clip_resized = clip.resize(height=512)
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
print("video resized to 512 height")
# Opens the Video file with CV2
cap= cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
cv2.imwrite('kang'+str(i)+'.jpg',frame)
frames.append('kang'+str(i)+'.jpg')
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def convert(gif):
if gif != None:
clip = VideoFileClip(gif.name)
clip.write_videofile("my_gif_video.mp4")
return "my_gif_video.mp4"
else:
pass
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold, gif_import):
print(f"""
βββββββββββββββ
{prompt}
βββββββββββββββ""")
# 1. break video into frames and get FPS
break_vid = get_frames(video_in)
frames_list= break_vid[0]
fps = break_vid[1]
n_frame = int(trim_value*fps)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
processor_result_frames = []
result_frames = []
print("set stop frames to: " + str(n_frame))
for i in frames_list[0:int(n_frame)]:
controlnet_img = controlnet(i, prompt,control_task, seed_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold)
#images = controlnet_img[0]
#rgb_im = images[0].convert("RGB")
# exporting the image
#rgb_im.save(f"result_img-{i}.jpg")
processor_result_frames.append(controlnet_img[1])
result_frames.append(controlnet_img[0])
print("frame " + i + "/" + str(n_frame) + ": done;")
processor_vid = create_video(processor_result_frames, fps, "processor")
final_vid = create_video(result_frames, fps, "final")
files = [processor_vid, final_vid]
if gif_import != None:
final_gif = VideoFileClip(final_vid)
final_gif.write_gif("final_result.gif")
final_gif = "final_result.gif"
files.append(final_gif)
print("finished !")
return final_vid, gr.Accordion.update(visible=True), gr.Video.update(value=processor_vid, visible=True), gr.File.update(value=files, visible=True), gr.Group.update(visible=True)
def clean():
return gr.Accordion.update(visible=False),gr.Video.update(value=None, visible=False), gr.Video.update(value=None), gr.File.update(value=None, visible=False), gr.Group.update(visible=False)
title = """
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
ControlNet Video
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Apply ControlNet to a video
</p>
</div>
"""
article = """
<div class="footer">
<p>
Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates π€
</p>
</div>
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;">
<p>You may also like: </p>
<div id="may-like-content" style="display:flex;flex-wrap: wrap;align-items:center;height:20px;">
<svg height="20" width="148" style="margin-left:4px;margin-bottom: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video" target="_blank">
<image href="https://img.shields.io/badge/π€ Spaces-Pix2Pix_Video-blue" src="https://img.shields.io/badge/π€ Spaces-Pix2Pix_Video-blue.png" height="20"/>
</a>
</svg>
</div>
</div>
"""
with gr.Blocks(css='style.css') as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
gr.HTML("""
<a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/ControlNet-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
""", elem_id="duplicate-container")
with gr.Row():
with gr.Column():
video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid")
video_out = gr.Video(label="ControlNet video result", elem_id="video-output")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Accordion("Detailed results", visible=False) as detailed_result:
prep_video_out = gr.Video(label="Preprocessor video result", visible=False, elem_id="prep-video-output")
files = gr.File(label="Files can be downloaded ;)", visible=False)
with gr.Column():
#status = gr.Textbox()
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
with gr.Row():
control_task = gr.Dropdown(label="Control Task", choices=["Canny", "Depth", "Hed", "Hough", "Normal", "Pose", "Scribble", "Seg"], value="Pose", multiselect=False, elem_id="controltask-in")
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
with gr.Row():
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1)
with gr.Accordion("Advanced Options", open=False):
with gr.Tab("Diffusion Settings"):
with gr.Row(visible=False) as canny_opt:
low_threshold = gr.Slider(label='Canny low threshold', minimum=1, maximum=255, value=100, step=1)
high_threshold = gr.Slider(label='Canny high threshold', minimum=1, maximum=255, value=200, step=1)
with gr.Row(visible=False) as hough_opt:
value_threshold = gr.Slider(label='Hough value threshold (MLSD)', minimum=0.01, maximum=2.0, value=0.1, step=0.01)
distance_threshold = gr.Slider(label='Hough distance threshold (MLSD)', minimum=0.01, maximum=20.0, value=0.1, step=0.01)
with gr.Row(visible=False) as normal_opt:
bg_threshold = gr.Slider(label='Normal background threshold', minimum=0.0, maximum=1.0, value=0.4, step=0.01)
ddim_steps = gr.Slider(label='Steps', minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label='Guidance Scale', minimum=0.1, maximum=30.0, value=9.0, step=0.1)
with gr.Tab("GIF import"):
gif_import = gr.File(label="import a GIF instead", file_types=['.gif'])
gif_import.change(convert, gif_import, video_inp, queue=False)
with gr.Tab("Custom Model"):
current_base_model = gr.Text(label='Current base model',
value=DEFAULT_BASE_MODEL_URL)
with gr.Row():
with gr.Column():
base_model_repo = gr.Text(label='Base model repo',
max_lines=1,
placeholder=DEFAULT_BASE_MODEL_REPO,
interactive=True)
base_model_filename = gr.Text(
label='Base model file',
max_lines=1,
placeholder=DEFAULT_BASE_MODEL_FILENAME,
interactive=True)
change_base_model_button = gr.Button('Change base model')
gr.HTML(
'''<p>You can use other base models by specifying the repository name and filename.<br />
The base model must be compatible with Stable Diffusion v1.5.</p>''')
change_base_model_button.click(fn=model.set_base_model,
inputs=[
base_model_repo,
base_model_filename,
],
outputs=current_base_model, queue=False)
submit_btn = gr.Button("Generate ControlNet video")
inputs = [prompt,video_inp,control_task, seed_inp, trim_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold, gif_import]
outputs = [video_out, detailed_result, prep_video_out, files, share_group]
#outputs = [status]
gr.HTML(article)
control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
submit_btn.click(clean, inputs=[], outputs=[detailed_result, prep_video_out, video_out, files, share_group], queue=False)
submit_btn.click(infer, inputs, outputs)
share_button.click(None, [], [], _js=share_js)
demo.queue(max_size=12).launch() |