File size: 3,959 Bytes
7d60ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
diff --git a/annotator/hed/__init__.py b/annotator/hed/__init__.py
index 42d8dc6..1587035 100644
--- a/annotator/hed/__init__.py
+++ b/annotator/hed/__init__.py
@@ -1,8 +1,12 @@
+import pathlib
+
 import numpy as np
 import cv2
 import torch
 from einops import rearrange
 
+root_dir = pathlib.Path(__file__).parents[2]
+
 
 class Network(torch.nn.Module):
     def __init__(self):
@@ -64,7 +68,7 @@ class Network(torch.nn.Module):
             torch.nn.Sigmoid()
         )
 
-        self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load('./annotator/ckpts/network-bsds500.pth').items()})
+        self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(f'{root_dir}/annotator/ckpts/network-bsds500.pth').items()})
     # end
 
     def forward(self, tenInput):
diff --git a/annotator/midas/api.py b/annotator/midas/api.py
index 9fa305e..d8594ea 100644
--- a/annotator/midas/api.py
+++ b/annotator/midas/api.py
@@ -1,5 +1,7 @@
 # based on https://github.com/isl-org/MiDaS
 
+import pathlib
+
 import cv2
 import torch
 import torch.nn as nn
@@ -10,10 +12,11 @@ from .midas.midas_net import MidasNet
 from .midas.midas_net_custom import MidasNet_small
 from .midas.transforms import Resize, NormalizeImage, PrepareForNet
 
+root_dir = pathlib.Path(__file__).parents[2]
 
 ISL_PATHS = {
-    "dpt_large": "annotator/ckpts/dpt_large-midas-2f21e586.pt",
-    "dpt_hybrid": "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt",
+    "dpt_large": f"{root_dir}/annotator/ckpts/dpt_large-midas-2f21e586.pt",
+    "dpt_hybrid": f"{root_dir}/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt",
     "midas_v21": "",
     "midas_v21_small": "",
 }
diff --git a/annotator/mlsd/__init__.py b/annotator/mlsd/__init__.py
index 75db717..f310fe6 100644
--- a/annotator/mlsd/__init__.py
+++ b/annotator/mlsd/__init__.py
@@ -1,3 +1,5 @@
+import pathlib
+
 import cv2
 import numpy as np
 import torch
@@ -8,8 +10,9 @@ from .models.mbv2_mlsd_tiny import  MobileV2_MLSD_Tiny
 from .models.mbv2_mlsd_large import  MobileV2_MLSD_Large
 from .utils import  pred_lines
 
+root_dir = pathlib.Path(__file__).parents[2]
 
-model_path = './annotator/ckpts/mlsd_large_512_fp32.pth'
+model_path = f'{root_dir}/annotator/ckpts/mlsd_large_512_fp32.pth'
 model = MobileV2_MLSD_Large()
 model.load_state_dict(torch.load(model_path), strict=True)
 model = model.cuda().eval()
diff --git a/annotator/openpose/__init__.py b/annotator/openpose/__init__.py
index 47d50a5..2369eed 100644
--- a/annotator/openpose/__init__.py
+++ b/annotator/openpose/__init__.py
@@ -1,4 +1,5 @@
 import os
+import pathlib
 os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
 
 import torch
@@ -7,8 +8,10 @@ from . import util
 from .body import Body
 from .hand import Hand
 
-body_estimation = Body('./annotator/ckpts/body_pose_model.pth')
-hand_estimation = Hand('./annotator/ckpts/hand_pose_model.pth')
+root_dir = pathlib.Path(__file__).parents[2]
+
+body_estimation = Body(f'{root_dir}/annotator/ckpts/body_pose_model.pth')
+hand_estimation = Hand(f'{root_dir}/annotator/ckpts/hand_pose_model.pth')
 
 
 def apply_openpose(oriImg, hand=False):
diff --git a/annotator/uniformer/__init__.py b/annotator/uniformer/__init__.py
index 500e53c..4061dbe 100644
--- a/annotator/uniformer/__init__.py
+++ b/annotator/uniformer/__init__.py
@@ -1,9 +1,12 @@
+import pathlib
+
 from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
 from annotator.uniformer.mmseg.core.evaluation import get_palette
 
+root_dir = pathlib.Path(__file__).parents[2]
 
-checkpoint_file = "annotator/ckpts/upernet_global_small.pth"
-config_file = 'annotator/uniformer/exp/upernet_global_small/config.py'
+checkpoint_file = f"{root_dir}/annotator/ckpts/upernet_global_small.pth"
+config_file = f'{root_dir}/annotator/uniformer/exp/upernet_global_small/config.py'
 model = init_segmentor(config_file, checkpoint_file).cuda()