File size: 8,253 Bytes
c585644
 
 
 
 
 
 
 
 
 
 
7218e6b
82ca7db
28455d6
c585644
 
 
 
28455d6
c585644
 
 
 
 
 
 
7218e6b
c585644
7218e6b
 
c585644
7218e6b
c585644
28455d6
 
 
 
 
 
 
 
 
c585644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28455d6
c585644
 
 
 
 
28455d6
 
 
 
c585644
 
7218e6b
 
 
 
 
 
c585644
7218e6b
 
 
 
 
 
 
 
 
28455d6
7218e6b
c585644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7218e6b
 
c585644
 
 
 
 
 
 
 
 
 
82ca7db
 
 
 
7218e6b
28455d6
c585644
 
7218e6b
c585644
 
 
 
 
 
 
 
7218e6b
 
 
 
 
 
 
 
 
c585644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7218e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0cd321
 
7218e6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import cv2
import chromadb
from transformers import pipeline
import torch.nn as nn
import matplotlib.pyplot as plt

# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

clip_model, preprocess_val, tokenizer, device = load_clip_model()

# Load Clothing Segmentation model
@st.cache_resource
def load_segmentation_model():
    return pipeline(model="mattmdjaga/segformer_b2_clothes")

segmenter = load_segmentation_model()

# Load ChromaDB
@st.cache_resource
def load_chromadb():
    client = chromadb.PersistentClient(path="./clothesDB")
    collection = client.get_collection(name="clothes_items_ver3")
    return collection

collection = load_chromadb()

# Helper functions
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                return None

def get_image_embedding(image):
    image_tensor = preprocess_val(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()

def get_text_embedding(text):
    text_tokens = tokenizer([text]).to(device)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens)
        text_features /= text_features.norm(dim=-1, keepdim=True)
    return text_features.cpu().numpy()

def find_similar_images(query_embedding, collection, top_k=5):
    database_embeddings = np.array(collection.get(include=['embeddings'])['embeddings'])
    similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
    top_indices = np.argsort(similarities)[::-1][:top_k]
    
    all_data = collection.get(include=['metadatas'])['metadatas']
    
    results = [
        {'info': all_data[idx], 'similarity': similarities[idx]}
        for idx in top_indices
    ]
    return results

def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
    segments = segmenter(img)
    mask_list = []
    for s in segments:
        if s['label'] in clothes:
            mask_list.append(s['mask'])
    
    if mask_list:
        final_mask = np.array(mask_list[0])
        for mask in mask_list[1:]:
            current_mask = np.array(mask)
            final_mask = final_mask + current_mask
        
        final_mask = Image.fromarray(final_mask.astype('uint8') * 255)
        img = img.convert("RGBA")
        img.putalpha(final_mask)
    
    return img, segments

# Streamlit app
st.title("Advanced Fashion Search App")

# Initialize session state
if 'step' not in st.session_state:
    st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
    st.session_state.query_image_url = ''
if 'segmentations' not in st.session_state:
    st.session_state.segmentations = []
if 'selected_category' not in st.session_state:
    st.session_state.selected_category = None

# Step-by-step processing
if st.session_state.step == 'input':
    st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
    if st.button("Segment Clothing"):
        if st.session_state.query_image_url:
            query_image = load_image_from_url(st.session_state.query_image_url)
            if query_image is not None:
                st.session_state.query_image = query_image
                segmented_image, st.session_state.segmentations = segment_clothing(query_image)
                st.session_state.segmented_image = segmented_image
                if st.session_state.segmentations:
                    st.session_state.step = 'select_category'
                else:
                    st.warning("No clothing items segmented in the image.")
            else:
                st.error("Failed to load the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")

elif st.session_state.step == 'select_category':
    col1, col2 = st.columns(2)
    with col1:
        st.image(st.session_state.query_image, caption="Original Image", use_column_width=True)
    with col2:
        st.image(st.session_state.segmented_image, caption="Segmented Image", use_column_width=True)

    st.subheader("Segmented Clothing Items:")
    
    options = list(set(s['label'] for s in st.session_state.segmentations))
    selected_option = st.selectbox("Select a category to search:", options)
    
    if st.button("Search Similar Items"):
        st.session_state.selected_category = selected_option
        st.session_state.step = 'show_results'

elif st.session_state.step == 'show_results':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    st.image(st.session_state.segmented_image, caption="Segmented Image", use_column_width=True)
    
    selected_segment = next(s for s in st.session_state.segmentations if s['label'] == st.session_state.selected_category)
    mask = np.array(selected_segment['mask'])
    masked_image = Image.fromarray((np.array(st.session_state.query_image) * mask[:,:,None]).astype('uint8'))
    
    st.image(masked_image, caption=f"Selected Category: {st.session_state.selected_category}", use_column_width=True)
    
    query_embedding = get_image_embedding(masked_image)
    similar_images = find_similar_images(query_embedding, collection)
    
    st.subheader("Similar Items:")
    for img in similar_images:
        col1, col2 = st.columns(2)
        with col1:
            st.image(img['info']['image_url'], use_column_width=True)
        with col2:
            st.write(f"Name: {img['info']['name']}")
            st.write(f"Brand: {img['info']['brand']}")
            category = img['info'].get('category')
            if category:  
                st.write(f"Category: {category}")
            st.write(f"Price: {img['info']['price']}")
            st.write(f"Discount: {img['info']['discount']}%")
            st.write(f"Similarity: {img['similarity']:.2f}")
    
    if st.button("Start New Search"):
        st.session_state.step = 'input'
        st.session_state.query_image_url = ''
        st.session_state.segmentations = []
        st.session_state.selected_category = None

# Text search (optional, you can keep or remove this part)
st.sidebar.title("Text Search")
query_text = st.sidebar.text_input("Enter search text:")
if st.sidebar.button("Search by Text"):
    if query_text:
        text_embedding = get_text_embedding(query_text)
        similar_images = find_similar_images(text_embedding, collection)
        st.sidebar.subheader("Similar Items:")
        for img in similar_images:
            st.sidebar.image(img['info']['image_url'], use_column_width=True)
            st.sidebar.write(f"Name: {img['info']['name']}")
            st.sidebar.write(f"Brand: {img['info']['brand']}")
            category = img['info'].get('category')
            if category:
                st.sidebar.write(f"Category: {category}")
            st.sidebar.write(f"Price: {img['info']['price']}")
            st.sidebar.write(f"Discount: {img['info']['discount']}%")
            st.sidebar.write(f"Similarity: {img['similarity']:.2f}")
    else:
        st.sidebar.warning("Please enter a search text.")

# Display ChromaDB vacuum message
st.sidebar.warning("If you've upgraded ChromaDB from a version below 0.6, you may benefit from vacuuming your database")