Spaces:
Runtime error
Runtime error
File size: 8,253 Bytes
c585644 7218e6b 82ca7db 28455d6 c585644 28455d6 c585644 7218e6b c585644 7218e6b c585644 7218e6b c585644 28455d6 c585644 28455d6 c585644 28455d6 c585644 7218e6b c585644 7218e6b 28455d6 7218e6b c585644 7218e6b c585644 82ca7db 7218e6b 28455d6 c585644 7218e6b c585644 7218e6b c585644 7218e6b f0cd321 7218e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import cv2
import chromadb
from transformers import pipeline
import torch.nn as nn
import matplotlib.pyplot as plt
# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
clip_model, preprocess_val, tokenizer, device = load_clip_model()
# Load Clothing Segmentation model
@st.cache_resource
def load_segmentation_model():
return pipeline(model="mattmdjaga/segformer_b2_clothes")
segmenter = load_segmentation_model()
# Load ChromaDB
@st.cache_resource
def load_chromadb():
client = chromadb.PersistentClient(path="./clothesDB")
collection = client.get_collection(name="clothes_items_ver3")
return collection
collection = load_chromadb()
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
if attempt < max_retries - 1:
time.sleep(1)
else:
return None
def get_image_embedding(image):
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()
def get_text_embedding(text):
text_tokens = tokenizer([text]).to(device)
with torch.no_grad():
text_features = clip_model.encode_text(text_tokens)
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy()
def find_similar_images(query_embedding, collection, top_k=5):
database_embeddings = np.array(collection.get(include=['embeddings'])['embeddings'])
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
top_indices = np.argsort(similarities)[::-1][:top_k]
all_data = collection.get(include=['metadatas'])['metadatas']
results = [
{'info': all_data[idx], 'similarity': similarities[idx]}
for idx in top_indices
]
return results
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
segments = segmenter(img)
mask_list = []
for s in segments:
if s['label'] in clothes:
mask_list.append(s['mask'])
if mask_list:
final_mask = np.array(mask_list[0])
for mask in mask_list[1:]:
current_mask = np.array(mask)
final_mask = final_mask + current_mask
final_mask = Image.fromarray(final_mask.astype('uint8') * 255)
img = img.convert("RGBA")
img.putalpha(final_mask)
return img, segments
# Streamlit app
st.title("Advanced Fashion Search App")
# Initialize session state
if 'step' not in st.session_state:
st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
st.session_state.query_image_url = ''
if 'segmentations' not in st.session_state:
st.session_state.segmentations = []
if 'selected_category' not in st.session_state:
st.session_state.selected_category = None
# Step-by-step processing
if st.session_state.step == 'input':
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
if st.button("Segment Clothing"):
if st.session_state.query_image_url:
query_image = load_image_from_url(st.session_state.query_image_url)
if query_image is not None:
st.session_state.query_image = query_image
segmented_image, st.session_state.segmentations = segment_clothing(query_image)
st.session_state.segmented_image = segmented_image
if st.session_state.segmentations:
st.session_state.step = 'select_category'
else:
st.warning("No clothing items segmented in the image.")
else:
st.error("Failed to load the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
elif st.session_state.step == 'select_category':
col1, col2 = st.columns(2)
with col1:
st.image(st.session_state.query_image, caption="Original Image", use_column_width=True)
with col2:
st.image(st.session_state.segmented_image, caption="Segmented Image", use_column_width=True)
st.subheader("Segmented Clothing Items:")
options = list(set(s['label'] for s in st.session_state.segmentations))
selected_option = st.selectbox("Select a category to search:", options)
if st.button("Search Similar Items"):
st.session_state.selected_category = selected_option
st.session_state.step = 'show_results'
elif st.session_state.step == 'show_results':
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
st.image(st.session_state.segmented_image, caption="Segmented Image", use_column_width=True)
selected_segment = next(s for s in st.session_state.segmentations if s['label'] == st.session_state.selected_category)
mask = np.array(selected_segment['mask'])
masked_image = Image.fromarray((np.array(st.session_state.query_image) * mask[:,:,None]).astype('uint8'))
st.image(masked_image, caption=f"Selected Category: {st.session_state.selected_category}", use_column_width=True)
query_embedding = get_image_embedding(masked_image)
similar_images = find_similar_images(query_embedding, collection)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.write(f"Category: {category}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
if st.button("Start New Search"):
st.session_state.step = 'input'
st.session_state.query_image_url = ''
st.session_state.segmentations = []
st.session_state.selected_category = None
# Text search (optional, you can keep or remove this part)
st.sidebar.title("Text Search")
query_text = st.sidebar.text_input("Enter search text:")
if st.sidebar.button("Search by Text"):
if query_text:
text_embedding = get_text_embedding(query_text)
similar_images = find_similar_images(text_embedding, collection)
st.sidebar.subheader("Similar Items:")
for img in similar_images:
st.sidebar.image(img['info']['image_url'], use_column_width=True)
st.sidebar.write(f"Name: {img['info']['name']}")
st.sidebar.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.sidebar.write(f"Category: {category}")
st.sidebar.write(f"Price: {img['info']['price']}")
st.sidebar.write(f"Discount: {img['info']['discount']}%")
st.sidebar.write(f"Similarity: {img['similarity']:.2f}")
else:
st.sidebar.warning("Please enter a search text.")
# Display ChromaDB vacuum message
st.sidebar.warning("If you've upgraded ChromaDB from a version below 0.6, you may benefit from vacuuming your database") |