Spaces:
Runtime error
Runtime error
import streamlit as st | |
import open_clip | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import time | |
import json | |
import numpy as np | |
# Load model and tokenizer | |
def load_model(): | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
return model, preprocess_val, tokenizer, device | |
model, preprocess_val, tokenizer, device = load_model() | |
# Load and process data | |
def load_data(): | |
with open('./musinsa-final.json', 'r', encoding='utf-8') as f: | |
return json.load(f) | |
data = load_data() | |
# Helper functions | |
def load_image_from_url(url, max_retries=3): | |
for attempt in range(max_retries): | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
img = Image.open(BytesIO(response.content)).convert('RGB') | |
return img | |
except (requests.RequestException, Image.UnidentifiedImageError) as e: | |
#st.warning(f"Attempt {attempt + 1} failed: {str(e)}") | |
if attempt < max_retries - 1: | |
time.sleep(1) | |
else: | |
#st.error(f"Failed to load image from {url} after {max_retries} attempts") | |
return None | |
def get_image_embedding_from_url(image_url): | |
image = load_image_from_url(image_url) | |
if image is None: | |
return None | |
image_tensor = preprocess_val(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = model.encode_image(image_tensor) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
return image_features.cpu().numpy() | |
def process_database(): | |
database_embeddings = [] | |
database_info = [] | |
for item in data: | |
image_url = item['์ด๋ฏธ์ง ๋งํฌ'][0] | |
embedding = get_image_embedding_from_url(image_url) | |
if embedding is not None: | |
database_embeddings.append(embedding) | |
database_info.append({ | |
'id': item['\ufeff์ํ ID'], | |
'category': item['์นดํ ๊ณ ๋ฆฌ'], | |
'brand': item['๋ธ๋๋๋ช '], | |
'name': item['์ ํ๋ช '], | |
'price': item['์ ๊ฐ'], | |
'discount': item['ํ ์ธ์จ'], | |
'image_url': image_url | |
}) | |
else: | |
st.warning(f"Skipping item {item['๏ปฟ์ํ ID']} due to image loading failure") | |
if database_embeddings: | |
return np.vstack(database_embeddings), database_info | |
else: | |
st.error("No valid embeddings were generated.") | |
return None, None | |
database_embeddings, database_info = process_database() | |
def get_text_embedding(text): | |
text_tokens = tokenizer([text]).to(device) | |
with torch.no_grad(): | |
text_features = model.encode_text(text_tokens) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
return text_features.cpu().numpy() | |
def find_similar_images(query_embedding, top_k=5): | |
similarities = np.dot(database_embeddings, query_embedding.T).squeeze() | |
top_indices = np.argsort(similarities)[::-1][:top_k] | |
results = [] | |
for idx in top_indices: | |
results.append({ | |
'info': database_info[idx], | |
'similarity': similarities[idx] | |
}) | |
return results | |
# Streamlit app | |
st.title("Fashion Search App") | |
search_type = st.radio("Search by:", ("Image URL", "Text")) | |
if search_type == "Image URL": | |
query_image_url = st.text_input("Enter image URL:") | |
if st.button("Search by Image"): | |
if query_image_url: | |
query_embedding = get_image_embedding_from_url(query_image_url) | |
if query_embedding is not None: | |
similar_images = find_similar_images(query_embedding) | |
st.image(query_image_url, caption="Query Image", use_column_width=True) | |
st.subheader("Similar Items:") | |
for img in similar_images: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(img['info']['image_url'], use_column_width=True) | |
with col2: | |
st.write(f"Name: {img['info']['name']}") | |
st.write(f"Brand: {img['info']['brand']}") | |
st.write(f"Category: {img['info']['category']}") | |
st.write(f"Price: {img['info']['price']}") | |
st.write(f"Discount: {img['info']['discount']}%") | |
st.write(f"Similarity: {img['similarity']:.2f}") | |
else: | |
st.error("Failed to process the image. Please try another URL.") | |
else: | |
st.warning("Please enter an image URL.") | |
else: # Text search | |
query_text = st.text_input("Enter search text:") | |
if st.button("Search by Text"): | |
if query_text: | |
text_embedding = get_text_embedding(query_text) | |
similar_images = find_similar_images(text_embedding) | |
st.subheader("Similar Items:") | |
for img in similar_images: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(img['info']['image_url'], use_column_width=True) | |
with col2: | |
st.write(f"Name: {img['info']['name']}") | |
st.write(f"Brand: {img['info']['brand']}") | |
st.write(f"Category: {img['info']['category']}") | |
st.write(f"Price: {img['info']['price']}") | |
st.write(f"Discount: {img['info']['discount']}%") | |
st.write(f"Similarity: {img['similarity']:.2f}") | |
else: | |
st.warning("Please enter a search text.") |