Spaces:
Runtime error
Runtime error
import streamlit as st | |
import open_clip | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import time | |
import json | |
import numpy as np | |
import cv2 | |
import chromadb | |
from transformers import pipeline | |
import torch.nn as nn | |
import matplotlib.pyplot as plt | |
# Load CLIP model and tokenizer | |
def load_clip_model(): | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
return model, preprocess_val, tokenizer, device | |
clip_model, preprocess_val, tokenizer, device = load_clip_model() | |
# Load Clothing Segmentation model | |
def load_segmentation_model(): | |
return pipeline(model="mattmdjaga/segformer_b2_clothes") | |
segmenter = load_segmentation_model() | |
# Load ChromaDB | |
def load_chromadb(): | |
client = chromadb.PersistentClient(path="./clothesDB") | |
collection = client.get_collection(name="clothes_items_ver3") | |
return collection | |
collection = load_chromadb() | |
# Helper functions | |
def load_image_from_url(url, max_retries=3): | |
for attempt in range(max_retries): | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
img = Image.open(BytesIO(response.content)).convert('RGB') | |
return img | |
except (requests.RequestException, Image.UnidentifiedImageError) as e: | |
if attempt < max_retries - 1: | |
time.sleep(1) | |
else: | |
return None | |
def get_image_embedding(image): | |
image_tensor = preprocess_val(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = clip_model.encode_image(image_tensor) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
return image_features.cpu().numpy() | |
def get_text_embedding(text): | |
text_tokens = tokenizer([text]).to(device) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text_tokens) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
return text_features.cpu().numpy() | |
def find_similar_images(query_embedding, collection, top_k=5): | |
database_embeddings = np.array(collection.get(include=['embeddings'])['embeddings']) | |
similarities = np.dot(database_embeddings, query_embedding.T).squeeze() | |
top_indices = np.argsort(similarities)[::-1][:top_k] | |
all_data = collection.get(include=['metadatas'])['metadatas'] | |
results = [ | |
{'info': all_data[idx], 'similarity': similarities[idx]} | |
for idx in top_indices | |
] | |
return results | |
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]): | |
segments = segmenter(img) | |
mask_list = [] | |
for s in segments: | |
if s['label'] in clothes: | |
mask_list.append(s['mask']) | |
if mask_list: | |
final_mask = np.array(mask_list[0]) | |
for mask in mask_list[1:]: | |
current_mask = np.array(mask) | |
final_mask = final_mask + current_mask | |
final_mask = Image.fromarray(final_mask.astype('uint8') * 255) | |
img = img.convert("RGBA") | |
img.putalpha(final_mask) | |
return img, segments | |
# Streamlit app | |
st.title("Advanced Fashion Search App") | |
# Initialize session state | |
if 'step' not in st.session_state: | |
st.session_state.step = 'input' | |
if 'query_image_url' not in st.session_state: | |
st.session_state.query_image_url = '' | |
if 'segmentations' not in st.session_state: | |
st.session_state.segmentations = [] | |
if 'selected_category' not in st.session_state: | |
st.session_state.selected_category = None | |
# Step-by-step processing | |
if st.session_state.step == 'input': | |
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url) | |
if st.button("Segment Clothing"): | |
if st.session_state.query_image_url: | |
query_image = load_image_from_url(st.session_state.query_image_url) | |
if query_image is not None: | |
st.session_state.query_image = query_image | |
segmented_image, st.session_state.segmentations = segment_clothing(query_image) | |
st.session_state.segmented_image = segmented_image | |
if st.session_state.segmentations: | |
st.session_state.step = 'select_category' | |
else: | |
st.warning("No clothing items segmented in the image.") | |
else: | |
st.error("Failed to load the image. Please try another URL.") | |
else: | |
st.warning("Please enter an image URL.") | |
elif st.session_state.step == 'select_category': | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(st.session_state.query_image, caption="Original Image", use_column_width=True) | |
with col2: | |
st.image(st.session_state.segmented_image, caption="Segmented Image", use_column_width=True) | |
st.subheader("Segmented Clothing Items:") | |
options = list(set(s['label'] for s in st.session_state.segmentations)) | |
selected_option = st.selectbox("Select a category to search:", options) | |
if st.button("Search Similar Items"): | |
st.session_state.selected_category = selected_option | |
st.session_state.step = 'show_results' | |
elif st.session_state.step == 'show_results': | |
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True) | |
st.image(st.session_state.segmented_image, caption="Segmented Image", use_column_width=True) | |
selected_segment = next(s for s in st.session_state.segmentations if s['label'] == st.session_state.selected_category) | |
mask = np.array(selected_segment['mask']) | |
masked_image = Image.fromarray((np.array(st.session_state.query_image) * mask[:,:,None]).astype('uint8')) | |
st.image(masked_image, caption=f"Selected Category: {st.session_state.selected_category}", use_column_width=True) | |
query_embedding = get_image_embedding(masked_image) | |
similar_images = find_similar_images(query_embedding, collection) | |
st.subheader("Similar Items:") | |
for img in similar_images: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(img['info']['image_url'], use_column_width=True) | |
with col2: | |
st.write(f"Name: {img['info']['name']}") | |
st.write(f"Brand: {img['info']['brand']}") | |
category = img['info'].get('category') | |
if category: | |
st.write(f"Category: {category}") | |
st.write(f"Price: {img['info']['price']}") | |
st.write(f"Discount: {img['info']['discount']}%") | |
st.write(f"Similarity: {img['similarity']:.2f}") | |
if st.button("Start New Search"): | |
st.session_state.step = 'input' | |
st.session_state.query_image_url = '' | |
st.session_state.segmentations = [] | |
st.session_state.selected_category = None | |
# Text search (optional, you can keep or remove this part) | |
st.sidebar.title("Text Search") | |
query_text = st.sidebar.text_input("Enter search text:") | |
if st.sidebar.button("Search by Text"): | |
if query_text: | |
text_embedding = get_text_embedding(query_text) | |
similar_images = find_similar_images(text_embedding, collection) | |
st.sidebar.subheader("Similar Items:") | |
for img in similar_images: | |
st.sidebar.image(img['info']['image_url'], use_column_width=True) | |
st.sidebar.write(f"Name: {img['info']['name']}") | |
st.sidebar.write(f"Brand: {img['info']['brand']}") | |
category = img['info'].get('category') | |
if category: | |
st.sidebar.write(f"Category: {category}") | |
st.sidebar.write(f"Price: {img['info']['price']}") | |
st.sidebar.write(f"Discount: {img['info']['discount']}%") | |
st.sidebar.write(f"Similarity: {img['similarity']:.2f}") | |
else: | |
st.sidebar.warning("Please enter a search text.") | |
# Display ChromaDB vacuum message | |
st.sidebar.warning("If you've upgraded ChromaDB from a version below 0.6, you may benefit from vacuuming your database") |