File size: 5,219 Bytes
8e8fbf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc39a93
 
8e8fbf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc39a93
8e8fbf9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from flask import Flask, request, jsonify
from dotenv import load_dotenv
import os
import pymongo
import google.generativeai as genai
from flask_cors import CORS
from tqdm import tqdm

# Load environment variables from .env file
load_dotenv()

# Access the key
MONGODB_URI = os.getenv('MONGODB_URI')
EMBEDDING_MODEL = os.getenv('EMBEDDING_MODEL') or 'keepitreal/vietnamese-sbert'
DB_NAME = os.getenv('DB_NAME')
DB_COLLECTION = os.getenv('DB_COLLECTION')
GEMINI_KEY = os.getenv('GEMINI_KEY')
genai.configure(api_key=GEMINI_KEY)
model = genai.GenerativeModel('gemini-1.5-pro')

client = pymongo.MongoClient(MONGODB_URI)
db = client[DB_NAME] 
collection = db[DB_COLLECTION]

app = Flask(__name__)
CORS(app)

from sentence_transformers import SentenceTransformer
embedding_model = SentenceTransformer(EMBEDDING_MODEL)

def vector_search(user_query, collection, limit=4):
    """
    Perform a vector search in the MongoDB collection based on the user query.

    Args:
    user_query (str): The user's query string.
    collection (MongoCollection): The MongoDB collection to search.

    Returns:
    list: A list of matching documents.
    """

    # Generate embedding for the user query
    query_embedding = get_embedding(user_query)

    if query_embedding is None:
        return "Invalid query or embedding generation failed."

    # Define the vector search pipeline
    vector_search_stage = {
        "$vectorSearch": {
            "index": "vector_index",
            "queryVector": query_embedding,
            "path": "embedding",
            "numCandidates": 150,
            "limit": limit,
        }
    }

    unset_stage = {
        "$unset": "embedding" 
    }

    project_stage = {
        "$project": {
            "_id": 0,
            "title": 1,
            "details": 1,
            "price": 1,
            "promotion_price": 1,
            "size_options": 1,
            "gender_options": 1,
            "quantity": 1,
            "stock": 1,
            "is_shoes": 1,
            "is_sandals": 1,
        }
    }

    pipeline = [vector_search_stage, unset_stage, project_stage]

    # Execute the search
    results = collection.aggregate(pipeline)

    return list(results)

def get_search_result(query, collection):
    get_knowledge = vector_search(query, collection, 10)
    search_result = ""
    i = 0
    for result in get_knowledge:
        # print(result)
        i += 1
        if result.get('price'):
            search_result += f"\n\nSản phẩm {i+1}: {result.get('title')}, Giá: {result.get('price')}"
        
        if result.get('promotion_price'):
            search_result += f", Giá ưu đãi: {result.get('promotion_price')}"

        if result.get('stock'):
            search_result += f", Trạng thái: {result.get('stock')}"

        if result.get('is_shoes') == True:
            search_result += f", Loại: Giày"

        if result.get('is_sandals') == True:
            search_result += f", Loại: Dép"

        if result.get('size_options'):
            search_result += f", Size: {result.get('size_options')}"

        if result.get('gender_options'):
            search_result += f", Dành cho: {result.get('gender_options')}"

        if result.get('details'):
            search_result += f", Chi tiết sản phẩm: {result.get('details')}"
            
    return search_result

def get_embedding(text):
    if not text.strip():
        print("Attempted to get embedding for empty text.")
        return []

    embedding = embedding_model.encode(text)
    return embedding.tolist()


def process_query(query):
    return query.lower()

@app.route('/api/search', methods=['POST'])
def handle_query():
    data = request.get_json()
    query = process_query(data.get('question'))

    if not query:
        return jsonify({'error': 'No query provided'}), 400

    # Retrieve data from vector database

    source_information = get_search_result(query, collection).replace('<br>', '\n')
    combined_information = f"Hãy trở thành chuyên gia tư vấn bán hàng cho một website bán giày dép ThuThaoShoes. Câu hỏi của khách hàng: {query}\nTrả lời câu hỏi dựa vào các thông tin sản phẩm dưới đây: {source_information}."

    response = model.generate_content(combined_information)
    
    return jsonify({
        'content': response.text
        })


@app.route('/api/embedding', methods=['GET'])
def get_embedding_api():

    # Lấy tất cả các tài liệu từ collection
    documents = list(collection.find({}))

    for doc in tqdm(documents, desc="Processing documents"):
        product_specs = doc.get('title', '')
        product_cat = doc.get('category', '')
        print(product_specs + ' ' + product_cat)
        embedding = get_embedding(product_specs + ' Danh mục: ' + product_cat)
        
        if embedding is not None:
            # Cập nhật tài liệu với embedding mới
            collection.update_one(
                {'_id': doc['_id']},
                {'$set': {'embedding': embedding}}
        )
            
    return jsonify({'message': 'Embedding cập nhật thành công cho tất cả các tài liệu.'})

if __name__ == '__main__':
    app.run(debug=True)